Droplet size and nozzle tip pressure from a pulse-width modulation sprayer

Thomas R. Butts, Liberty E. Butts, Joe D. Luck, Bradley K. Fritz, Wesley C. Hoffmann, Greg R. Kruger

Research output: Contribution to journalArticlepeer-review

Abstract

Pulse-width modulation (PWM) sprayers can improve application accuracy through flow control, turn compensation, and high-resolution overlap control by pulsing an electronically-actuated solenoid valve which controls the relative proportion of time each solenoid valve is open (duty cycle). The objective of this experiment was to identify the droplet size distribution and nozzle tip pressure when influenced by PWM duty cycle, nozzle technology, and gauge pressure to provide PWM guidelines. The experiment was conducted in a low-speed wind tunnel at the Pesticide Application Technology Laboratory using a SharpShooter® PWM system. In general, for non-venturi nozzles, as duty cycle decreased, droplet size slightly increased between 40 and 100% duty cycles. Conversely, venturi nozzles did not always follow this trend. The lowest duty cycle evaluated (20%) negatively impacted droplet size and caused inconsistencies for all nozzle by pressure combinations. The addition of a solenoid valve lowered nozzle tip pressure while gauge pressure remained constant indicating a restriction is present within the solenoid valve. Greater orifice sizes increased the pressure loss observed. Duty cycle minimally impacted nozzle tip pressure trends which were similar to the electrical square wave PWM signals. However, venturi nozzles deviated from this trend, specifically twin-fan, single pre-orifice venturi nozzles. In conclusion, venturi nozzles are not recommended for PWM systems as they may lead to inconsistent applications, specifically in regards to droplet size generation and nozzle tip pressures. Spray pressures of 276 kPa or greater and PWM duty cycles of 40% or greater are recommended to ensure proper PWM operation.

Original languageEnglish (US)
Pages (from-to)52-69
Number of pages18
JournalBiosystems Engineering
Volume178
DOIs
StatePublished - Feb 2019

Keywords

  • Duty cycle
  • non-venturi nozzle
  • site-specific pest management
  • solenoid valve
  • venturi nozzle

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Food Science
  • Animal Science and Zoology
  • Agronomy and Crop Science
  • Soil Science

Fingerprint

Dive into the research topics of 'Droplet size and nozzle tip pressure from a pulse-width modulation sprayer'. Together they form a unique fingerprint.

Cite this