Abstract
Human immunodeficiency virus type 1 (HIV-1) persists as a pandemic even though new information about the virus is being discovered on a daily basis. If the brain becomes infected, HIV-1 encephalitis or HIV-1-associated dementia may develop. There is much to be learned about the modes of action and mechanisms of genes and proteins, and their interactions that underlie HIV-1 infection. Drosophila melanogaster has been used successfully to study genes and proteins related to HIV-1 infection, including but not limited to the disturbance of antimicrobial responses by viral protein U and the identification of D. melanogaster analogs to the serine palmitoyltransferase 5 and 6 proteins that play a role in activation of transcription by the HIV-1 Tat protein in human cells. We believe that utilizing D. melanogaster as a complementary system for the study of genes and proteins related to HIV-1 infection will provide useful information that will lead to new studies designed to enhance our understanding of the mechanistic roles of these molecules. In the present study, we focus on the utilization of D. melanogaster as a complementary system for studying HIV-1 related genes and proteins, why this research should be extended, and why this complementary system is an important method for enhancing our understanding of the genetics involved in HIV-1 infection.
Original language | English (US) |
---|---|
Pages (from-to) | 451-455 |
Number of pages | 5 |
Journal | Journal of Neuroscience Research |
Volume | 80 |
Issue number | 4 |
DOIs | |
State | Published - May 15 2005 |
Keywords
- Analogous proteins
- Complementary system
- Transgenic lines
ASJC Scopus subject areas
- Cellular and Molecular Neuroscience