Dynamic and differential regulation in the microRNA expression in the developing and mature cataractous rat lens

Eri Kubo, Nailia Hasanova, Hiroshi Sasaki, Dhirendra P. Singh

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Recent evidence supports a role for microRNAs (miRNAs) in regulating gene expression, and alterations in gene expression are known to affect cells involved in the development of ageing disorders. Using developing rat lens epithelial cells (LECs), we profiled the expression of miRNAs by a microarray-based approach. Few gene expression changes known to be involved in pathogenesis or cytoprotection were uniquely influenced by miRNA expression. Most miRNAs increased or decreased in abundance (let 7b, let 7c, miR29a, miR29c, miR126 and miR551b) in LECs/lenses during late embryonic and post-natal development and in cataract. Among them, miR29a, miR29c and miR126 were dramatically decreased in cataractous LECs from Shumiya Cataract Rats (SCRs). Specifically, the cytoskeleton remodelling genes tropomyosin (Tm) 1α and 2β, which have been implicated in the initiation of pathophysiology, were targets of miR29c and were over-stimulated as demonstrated by inhibitor experiments. In transfection experiments, increasing the level of miR29c caused a corresponding decrease in the expression of Tm1α and 2β, suggesting that miR29c may regulate the translation of Tm1α and 2β. 3′UTR luciferase activity of Tm1α, not 2β, was significantly decreased in miR29c-transfected mouse LECs. These findings demonstrate changes in miRNAs expression, and target molecules have potential as diagnostic indicators of ageing and as a foundation of miR-based therapeutics for age-related diseases.

Original languageEnglish (US)
Pages (from-to)1146-1159
Number of pages14
JournalJournal of cellular and molecular medicine
Issue number9
StatePublished - Sep 2013


  • Ageing
  • Cataract
  • Lens development
  • MicroRNA
  • Tropomyosin

ASJC Scopus subject areas

  • Molecular Medicine
  • Cell Biology


Dive into the research topics of 'Dynamic and differential regulation in the microRNA expression in the developing and mature cataractous rat lens'. Together they form a unique fingerprint.

Cite this