Abstract
The dynamics of laser-induced plasma and shockwave was studied using time-resolved shadowgraphy in femtosecond double-pulse ablation of silicon. The morphology and expansion distances of laser-induced plasma and shockwave can be controlled by adjusting the pulse delay. The underlying mechanism was interpreted in terms of suppressed laser-induced air breakdown and enhanced laser energy deposition. The former is proposed to reduce the expansion distance in the longitudinal direction for small pulse delay, while the latter is the dominant mechanism for increasing the expansion distance in the longitudinal and radial directions for pulse delay exceeding a few picoseconds.
Original language | English (US) |
---|---|
Article number | 012006 |
Journal | Applied Physics Express |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2020 |
ASJC Scopus subject areas
- General Engineering
- General Physics and Astronomy
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Dynamics and its modulation of laser-induced plasma and shockwave in femtosecond double-pulse ablation of silicon'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Applied Physics Express, Vol. 13, No. 1, 012006, 01.01.2020.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Dynamics and its modulation of laser-induced plasma and shockwave in femtosecond double-pulse ablation of silicon
AU - Pan, Changji
AU - Wang, Qingsong
AU - Sun, Jingya
AU - Wang, Feifei
AU - Sun, Jiaxin
AU - Wang, Guoyan
AU - Lu, Yongfeng
AU - Jiang, Lan
N1 - Funding Information: Changji Pan Qingsong Wang Jingya Sun Feifei Wang Jiaxin Sun Guoyan Wang Yongfeng Lu Lan Jiang Changji Pan Qingsong Wang Jingya Sun Feifei Wang Jiaxin Sun Guoyan Wang Yongfeng Lu Lan Jiang Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, United States of America These authors contribute equally to this work. Changji Pan, Qingsong Wang, Jingya Sun, Feifei Wang, Jiaxin Sun, Guoyan Wang, Yongfeng Lu and Lan Jiang 2020-01-01 2019-12-09 09:20:48 cgi/release: Article released bin/incoming: New from .zip National Natural Science Foundation of China https://doi.org/10.13039/501100001809 11704028 National Key R&D Program of China 2017YFB1104300 yes The dynamics of laser-induced plasma and shockwave was studied using time-resolved shadowgraphy in femtosecond double-pulse ablation of silicon. The morphology and expansion distances of laser-induced plasma and shockwave can be controlled by adjusting the pulse delay. The underlying mechanism was interpreted in terms of suppressed laser-induced air breakdown and enhanced laser energy deposition. The former is proposed to reduce the expansion distance in the longitudinal direction for small pulse delay, while the latter is the dominant mechanism for increasing the expansion distance in the longitudinal and radial directions for pulse delay exceeding a few picoseconds. � 2019 The Japan Society of Applied Physics [1] Kerse C. et al 2016 Nature 537 84 10.1038/nature18619 Kerse C. et al Nature 537 2016 84 [2] Zhang F., Duan J., Zhou X. and Wang C. 2018 Opt. Express 26 34016 10.1364/OE.26.034016 Zhang F., Duan J., Zhou X. and Wang C. Opt. Express 1094-4087 26 2018 34016 [3] Wang Z., Jiang L., Li X., Wang A., Yao Z., Zhang K. and Lu Y. 2018 Opt. Lett. 43 98 10.1364/OL.43.000098 Wang Z., Jiang L., Li X., Wang A., Yao Z., Zhang K. and Lu Y. Opt. Lett. 43 2018 98 [4] Saikiran V., Dar M. H. and Rao D. N. 2018 Appl. Surf. Sci. 428 177 10.1016/j.apsusc.2017.09.126 Saikiran V., Dar M. H. and Rao D. N. Appl. Surf. Sci. 0169-4332 428 2018 177 [5] Ródenas A., Gu M., Corrielli G., Paiè P., John S., Kar A. K. and Osellame R. 2019 Nat. Photonics 13 105 10.1038/s41566-018-0327-9 Ródenas A., Gu M., Corrielli G., Paiè P., John S., Kar A. K. and Osellame R. Nat. Photonics 13 2019 105 [6] Sanz M., Castillejo M., Amoruso S., Ausanio G., Bruzzese R. and Wang X. 2010 Appl. Phys. A 101 639 10.1007/s00339-010-5916-5 Sanz M., Castillejo M., Amoruso S., Ausanio G., Bruzzese R. and Wang X. Appl. Phys. A 1432-0630 101 2010 639 [7] Fischer D., Meyer L. V., Jansen M. and Müller-Buschbaum K. 2014 Angew. Chem. Int. Ed. 53 706 10.1002/anie.201305648 Fischer D., Meyer L. V., Jansen M. and Müller-Buschbaum K. Angew. Chem. Int. Ed. 0570-0833 53 2014 706 [8] Amoruso S., Ausanio G., Bruzzese R., Vitiello M. and Wang X. 2005 Phys. Rev. B 71 033406 10.1103/PhysRevB.71.033406 Amoruso S., Ausanio G., Bruzzese R., Vitiello M. and Wang X. Phys. Rev. B 71 033406 2005 [9] Wu H., Wu C., Zhang N., Zhu X., Ma X. and Zhigilei L. V. 2018 Appl. Surf. Sci. 435 1114 10.1016/j.apsusc.2017.11.190 Wu H., Wu C., Zhang N., Zhu X., Ma X. and Zhigilei L. V. Appl. Surf. Sci. 0169-4332 435 2018 1114 [10] Zeng X., Mao X. L., Greif R. and Russo R. E. 2005 Appl. Phys. A 80 237 10.1007/s00339-004-2963-9 Zeng X., Mao X. L., Greif R. and Russo R. E. Appl. Phys. A 1432-0630 80 2005 237 [11] Boueri M., Baudelet M., Yu J., Mao X., Mao S. S. and Russo R. 2009 Appl. Surf. Sci. 255 9566 10.1016/j.apsusc.2009.04.088 Boueri M., Baudelet M., Yu J., Mao X., Mao S. S. and Russo R. Appl. Surf. Sci. 0169-4332 255 2009 9566 [12] Choi T. Y. and Grigoropoulos C. P. 2002 J. Appl. Phys. 92 4918 10.1063/1.1510565 Choi T. Y. and Grigoropoulos C. P. J. Appl. Phys. 92 2002 4918 [13] Harilal S. S., Diwakar P. K., Polek M. P. and Phillips M. C. 2015 Opt. Express 23 15608 10.1364/OE.23.015608 Harilal S. S., Diwakar P. K., Polek M. P. and Phillips M. C. Opt. Express 1094-4087 23 2015 15608 [14] Zhang N., Zhu X., Yang J., Wang X. and Wang M. 2007 Phys. Rev. Lett. 99 167602 10.1103/PhysRevLett.99.167602 Zhang N., Zhu X., Yang J., Wang X. and Wang M. Phys. Rev. Lett. 99 167602 2007 [15] Wu Z., Zhu X. and Zhang N. 2011 J. Appl. Phys. 109 053113 10.1063/1.3554442 Wu Z., Zhu X. and Zhang N. J. Appl. Phys. 109 053113 2011 [16] Wang Q., Jiang L., Sun J., Pan C., Han W., Wang G., Zhang H., Grigoropoulos C. P. and Lu Y. 2017 Photonics Res. 5 488 10.1364/PRJ.5.000488 Wang Q., Jiang L., Sun J., Pan C., Han W., Wang G., Zhang H., Grigoropoulos C. P. and Lu Y. Photonics Res. 5 2017 488 [17] Wang Q., Jiang L., Sun J., Pan C., Han W., Wang G., Wang F., Zhang K., Li M. and Lu Y. 2018 Research 2018 5709748 10.1155/2018/5709748 Wang Q., Jiang L., Sun J., Pan C., Han W., Wang G., Wang F., Zhang K., Li M. and Lu Y. Research 2018 5709748 2018 [18] Jiang L., Wang A., Li B., Cui T. and Lu Y. 2018 Light Sci. Appl. 7 17134 10.1038/lsa.2017.134 Jiang L., Wang A., Li B., Cui T. and Lu Y. Light Sci. Appl. 7 2018 17134 [19] Amoruso S., Bruzzese R. and Wang X. 2009 Appl. Phys. Lett. 95 251501 10.1063/1.3276690 Amoruso S., Bruzzese R. and Wang X. Appl. Phys. Lett. 95 251501 2009 [20] Harilal S. S., Diwakar P. K. and Hassanein A. 2013 Appl. Phys. Lett. 103 041102 10.1063/1.4816348 Harilal S. S., Diwakar P. K. and Hassanein A. Appl. Phys. Lett. 103 041102 2013 [21] Penczak J., Kupfer R., Bar I. and Gordon R. J. 2014 Spectrochim. Acta, Part B 97 34 10.1016/j.sab.2014.04.007 Penczak J., Kupfer R., Bar I. and Gordon R. J. Spectrochim. Acta, Part B 97 2014 34 [22] Hu Z., Singha S., Liu Y. and Gordon R. J. 2007 Appl. Phys. Lett. 90 131910 10.1063/1.2716838 Hu Z., Singha S., Liu Y. and Gordon R. J. Appl. Phys. Lett. 90 131910 2007 [23] Chen A., Wang Y., Sui L., Li S., Li S., Liu D., Jiang Y. and Jin M. 2015 Opt. Express 23 24648 10.1364/OE.23.024648 Chen A., Wang Y., Sui L., Li S., Li S., Liu D., Jiang Y. and Jin M. Opt. Express 1094-4087 23 2015 24648 [24] Cao Z., Jiang L., Wang S., Wang M., Liu L., Yang F. and Lu Y. 2018 Spectrochim. Acta, Part B 141 63 10.1016/j.sab.2018.01.010 Cao Z., Jiang L., Wang S., Wang M., Liu L., Yang F. and Lu Y. Spectrochim. Acta, Part B 141 2018 63 [25] Choi T. Y., Hwang D. J. and Grigoropoulos C. P. 2002 Appl. Surf. Sci. 197–198 720 10.1016/S0169-4332(02)00400-2 Choi T. Y., Hwang D. J. and Grigoropoulos C. P. Appl. Surf. Sci. 0169-4332 197–198 2002 720 [26] Zhao X. and Shin Y. C. 2013 J. Phys. D: Appl. Phys. 46 335501 10.1088/0022-3727/46/33/335501 Zhao X. and Shin Y. C. J. Phys. D: Appl. Phys. 0022-3727 46 33 335501 2013 [27] Wu Z., Zhang N., Wang M. and Zhu X. 2011 Chin. Opt. Lett. 9 093201 10.3788/COL201109.093201 Wu Z., Zhang N., Wang M. and Zhu X. Chin. Opt. Lett. 9 093201 2011 [28] Zhang H., Zhang F., Du X., Dong G. and Qiu J. 2015 Opt. Express 23 1370 10.1364/OE.23.001370 Zhang H., Zhang F., Du X., Dong G. and Qiu J. Opt. Express 1094-4087 23 2015 1370 [29] Sedov L. I. 1993 Similarity and Dimensional Methods in Mechanics 10th ed (Boca Raton, FL: CRC Press) Sedov L. I. Similarity and Dimensional Methods in Mechanics 1993 [30] Koudoumas E., Spyridaki M., Stoian R., Rosenfeld A., Tzanetakis P., Hertel I. V. and Fotakis C. 2004 Thin Solid Films 453–454 372 10.1016/j.tsf.2003.11.111 Koudoumas E., Spyridaki M., Stoian R., Rosenfeld A., Tzanetakis P., Hertel I. V. and Fotakis C. Thin Solid Films 0040-6090 453–454 2004 372 [31] Zhao X. and Shin Y. C. 2014 Appl. Phys. Lett. 105 111907 10.1063/1.4896350 Zhao X. and Shin Y. C. Appl. Phys. Lett. 105 111907 2014 [32] Zhao X. and Shin Y. C. 2015 Appl. Phys. B 120 81 10.1007/s00340-015-6102-4 Zhao X. and Shin Y. C. Appl. Phys. B 1432-0649 120 2015 81
PY - 2020/1/1
Y1 - 2020/1/1
N2 - The dynamics of laser-induced plasma and shockwave was studied using time-resolved shadowgraphy in femtosecond double-pulse ablation of silicon. The morphology and expansion distances of laser-induced plasma and shockwave can be controlled by adjusting the pulse delay. The underlying mechanism was interpreted in terms of suppressed laser-induced air breakdown and enhanced laser energy deposition. The former is proposed to reduce the expansion distance in the longitudinal direction for small pulse delay, while the latter is the dominant mechanism for increasing the expansion distance in the longitudinal and radial directions for pulse delay exceeding a few picoseconds.
AB - The dynamics of laser-induced plasma and shockwave was studied using time-resolved shadowgraphy in femtosecond double-pulse ablation of silicon. The morphology and expansion distances of laser-induced plasma and shockwave can be controlled by adjusting the pulse delay. The underlying mechanism was interpreted in terms of suppressed laser-induced air breakdown and enhanced laser energy deposition. The former is proposed to reduce the expansion distance in the longitudinal direction for small pulse delay, while the latter is the dominant mechanism for increasing the expansion distance in the longitudinal and radial directions for pulse delay exceeding a few picoseconds.
UR - http://www.scopus.com/inward/record.url?scp=85076739103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076739103&partnerID=8YFLogxK
U2 - 10.7567/1882-0786/ab59ae
DO - 10.7567/1882-0786/ab59ae
M3 - Article
AN - SCOPUS:85076739103
SN - 1882-0778
VL - 13
JO - Applied Physics Express
JF - Applied Physics Express
IS - 1
M1 - 012006
ER -