TY - JOUR
T1 - Effects of forced convection and surface tension during methanol droplet combustion
AU - Raghavan, Vasudevan
AU - Pope, Daniel N.
AU - Gogos, George
N1 - Funding Information:
This research was funded by NASA EPSCoR under grant NCC5-572. Computational resources were provided by the Thermal-Fluids computational facility and the Research Computing Facility at the University of Nebraska at Lincoln.
PY - 2006
Y1 - 2006
N2 - A numerical investigation of surface tension and forced convection effects on moving and suspended methanol droplets burning in a zero-gravity, low-pressure air environment is presented. Simulations were conducted using a predictive, transient, axisymmetric model for an initial droplet diameter of 0.5 mm, an ambient temperature of 1200 K, and initial Reynolds numbers (Re 0) in the range of 1-100. Results indicate that, for moving droplets, due to the presence of an envelope flame at some stage during the droplet lifetime, surface tension is important over the range of Re0 considered; the extinction diameter decreases with increasing Re0. For suspended droplets, when transition or envelope flame is present (Re 0 less than approximately 15), surface tension is important; when an envelope flame is present (Re0 less than approximately 10), the extinction diameter increases with Re0. Both for suspended and moving droplets, the droplet lifetime is weakly sensitive to surface tension. The variation of droplet lifetimes with Re0 is much stronger for suspended droplets than for moving droplets. Depending on the Reynolds number, results on methanol droplet lifetimes and extinction diameters measured through suspended droplet experiments may not be applicable to moving droplets.
AB - A numerical investigation of surface tension and forced convection effects on moving and suspended methanol droplets burning in a zero-gravity, low-pressure air environment is presented. Simulations were conducted using a predictive, transient, axisymmetric model for an initial droplet diameter of 0.5 mm, an ambient temperature of 1200 K, and initial Reynolds numbers (Re 0) in the range of 1-100. Results indicate that, for moving droplets, due to the presence of an envelope flame at some stage during the droplet lifetime, surface tension is important over the range of Re0 considered; the extinction diameter decreases with increasing Re0. For suspended droplets, when transition or envelope flame is present (Re 0 less than approximately 15), surface tension is important; when an envelope flame is present (Re0 less than approximately 10), the extinction diameter increases with Re0. Both for suspended and moving droplets, the droplet lifetime is weakly sensitive to surface tension. The variation of droplet lifetimes with Re0 is much stronger for suspended droplets than for moving droplets. Depending on the Reynolds number, results on methanol droplet lifetimes and extinction diameters measured through suspended droplet experiments may not be applicable to moving droplets.
UR - http://www.scopus.com/inward/record.url?scp=33751001762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751001762&partnerID=8YFLogxK
U2 - 10.2514/1.21174
DO - 10.2514/1.21174
M3 - Article
AN - SCOPUS:33751001762
SN - 0887-8722
VL - 20
SP - 787
EP - 798
JO - Journal of Thermophysics and Heat Transfer
JF - Journal of Thermophysics and Heat Transfer
IS - 4
ER -