Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number

A. Tamayol, K. W. Wong, M. Bahrami

Research output: Contribution to journalArticle

23 Scopus citations

Abstract

In this study, effects of microstructure on the viscous permeability and Forchheimer coefficient of monodispersed fibers are investigated. The porous material is represented by a unit cell which is assumed to be repeated throughout the medium. Based on the orientation of the fibers in the space, fibrous media are divided into three categories: one-, two-, and three-directional (1D, 2D, and 3D) structures. Parallel and transverse flow through square arrangements of 1D fibers, simple 2D mats, and 3D simple cubic structures are solved numerically over a wide range of porosity (0.35 < < 0.95) and Reynolds number (0.01 < Re < 200). The results are used to calculate the permeability and the inertial coefficient of the considered geometries. An experimental study is performed; the flow coefficients of three different ordered tube banks in the moderate range of Reynolds number (0.001 < Re < 15) are determined. The numerical results are successfully compared with the present and the existing experimental data in the literature. The results suggest that the permeability and Forchheimer coefficient are functions of porosity and fiber orientation. A comparison of the experimental and numerical results with the Ergun equation reveals that this equation is not suitable for highly porous materials. As such, accurate correlations are proposed for determining the Forchheimer coefficient in fibrous porous media.

Original languageEnglish (US)
Article number026318
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume85
Issue number2
DOIs
StatePublished - Feb 27 2012

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number'. Together they form a unique fingerprint.

  • Cite this