Effects of peripheral nonlinearity on psychometric functions for forward-masked tones

Kim S. Schairer, Lance Nizami, Jason F. Reimer, Walt Jesteadt

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Psychometric functions (PFs) for forward-masked tones were obtained for conditions in which signal level was varied to estimate threshold at several masker levels (variable-signal condition), and in which masker level was varied to estimate threshold at several signal levels (variable-masker condition). The changes in PF slope across combinations of masker frequency, masker level, and signal delay were explored in three experiments. In experiment 1, a 2-kHz, 10-ms tone was masked by a 50, 70 or 90 dB SPL, 20-ms on-frequency forward masker, with signal delays of 2, 20, or 40 ms, in a variable-signal condition. PF slopes decreased in conditions where signal threshold was high. In experiments 2 and 3, the signal was a 4-kHz, 10-ms tone, and the masker was either a 4-or 2.4-kHz, 200-ms tone. In experiment 2, on-frequency maskers were presented at 30 to 90 dB SPL in 10-dB steps and off-frequency maskers were presented at 60 to 90 dB SPL in 10-dB steps, with signal delays of 0, 10, or 30 ms, in a variable-signal condition. PF slopes decreased as signal level increased, and this trend was similar for on- and off-frequency maskers. In experiment 3, variable-masker conditions with on- and off-frequency maskers and 0-ms signal delay were presented. In general, the results were consistent with the hypothesis that peripheral nonlinearity is reflected in the PF slopes. The data also indicate that masker level plays a role independent of signal level, an effect that could be accounted for by assuming greater internal noise at higher stimulus levels.

Original languageEnglish (US)
Pages (from-to)1560-1573
Number of pages14
JournalJournal of the Acoustical Society of America
Volume113
Issue number3
DOIs
StatePublished - Mar 1 2003

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Effects of peripheral nonlinearity on psychometric functions for forward-masked tones'. Together they form a unique fingerprint.

Cite this