TY - JOUR
T1 - Efficacy of Antimicrobial Interventions Used in Meat Processing Plants against Antimicrobial Tolerant Non-Antibiotic-Resistant and Antibiotic-Resistant Salmonella on Fresh Beef
AU - Kalchayanand, Norasak
AU - Dass, Sapna Chitlapilly
AU - Zhang, Yangjunna
AU - Oliver, Eric L.
AU - Wang, Bing
AU - Wheeler, Tommy L.
N1 - Publisher Copyright:
© 2022 Authors. All rights reserved.
PY - 2022/8
Y1 - 2022/8
N2 - Salmonella is a common cause of foodborne illness in the United States, and several strains of Salmonella have been identified as resistant to antibiotics. It is not known whether strains that are antibiotic resistant (ABR) and that have some tolerance to antimicrobial compounds are also able to resist the inactivation effects of antimicrobial interventions used in fresh meat processing. Sixty-eight Salmonella isolates (non-ABR and ABR strains) were treated with half concentrations of lactic acid (LA), peracetic acid (PAA), and cetylpyridinium chloride (CPC), which are used in beef processing plants to screen for tolerant strains. Six strains each from non-ABR and ABR Salmonella that were most tolerant of LA (2%), PAA (200 ppm), and CPC (0.4%) were selected. Selected strains were inoculated on surfaces of fresh beef and subjected to spray wash treatment with 4% LA, 400 ppm PAA, or 0.8% CPC for the challenge study. Tissue samples were collected before and after each antimicrobial treatment for enumeration of survivors. Spray treatment with LA, PAA, or CPC significantly reduced non-ABR Salmonella and ABR Salmonella on surfaces of fresh beef by 1.95, 1.22, and 1.33 log CFU/cm2, and 2.14, 1.45, and 1.43 log CFU/cm2, respectively. The order of effectiveness was LA > PAA = CPC. The findings also indicated that LA, PAA, and CPC were equally (P ≤ 0.05) effective against non-ABR and ABR Salmonella on surfaces of fresh beef. These data contribute to the body of work that indicates that foodborne pathogens that have acquired both antibiotic resistance and antimicrobial tolerance are still equally susceptible to meat processing antimicrobial intervention treatments.
AB - Salmonella is a common cause of foodborne illness in the United States, and several strains of Salmonella have been identified as resistant to antibiotics. It is not known whether strains that are antibiotic resistant (ABR) and that have some tolerance to antimicrobial compounds are also able to resist the inactivation effects of antimicrobial interventions used in fresh meat processing. Sixty-eight Salmonella isolates (non-ABR and ABR strains) were treated with half concentrations of lactic acid (LA), peracetic acid (PAA), and cetylpyridinium chloride (CPC), which are used in beef processing plants to screen for tolerant strains. Six strains each from non-ABR and ABR Salmonella that were most tolerant of LA (2%), PAA (200 ppm), and CPC (0.4%) were selected. Selected strains were inoculated on surfaces of fresh beef and subjected to spray wash treatment with 4% LA, 400 ppm PAA, or 0.8% CPC for the challenge study. Tissue samples were collected before and after each antimicrobial treatment for enumeration of survivors. Spray treatment with LA, PAA, or CPC significantly reduced non-ABR Salmonella and ABR Salmonella on surfaces of fresh beef by 1.95, 1.22, and 1.33 log CFU/cm2, and 2.14, 1.45, and 1.43 log CFU/cm2, respectively. The order of effectiveness was LA > PAA = CPC. The findings also indicated that LA, PAA, and CPC were equally (P ≤ 0.05) effective against non-ABR and ABR Salmonella on surfaces of fresh beef. These data contribute to the body of work that indicates that foodborne pathogens that have acquired both antibiotic resistance and antimicrobial tolerance are still equally susceptible to meat processing antimicrobial intervention treatments.
KW - Antimicrobial tolerance
KW - Cetylpyridinium chloride
KW - Fresh beef
KW - Lactic acid
KW - Non-antibiotic resistant and antibiotic resistant Salmonella
KW - Peracetic acid
UR - http://www.scopus.com/inward/record.url?scp=85134720859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134720859&partnerID=8YFLogxK
U2 - 10.4315/JFP-21-364
DO - 10.4315/JFP-21-364
M3 - Article
C2 - 35653643
AN - SCOPUS:85134720859
SN - 0362-028X
VL - 85
SP - 1114
EP - 1121
JO - Journal of food protection
JF - Journal of food protection
IS - 8
ER -