Efficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems

Te Pi, Kevin Cole, James Beck

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Estimation of thermal properties or diffusion properties from transient data requires that a model is available that is physically meaningful and suitably precise. The model must also produce numerical values rapidly enough to accommodate iterative regression, inverse methods, or other estimation procedures during which the model is evaluated again and again. Bodies of infinite extent are a particular challenge from this perspective. Even for exact analytical solutions, because the solution often has the form of an improper integral that must be evaluated numerically, lengthy computer-evaluation time is a challenge. The subject of this paper is improving the computer evaluation time for exact solutions for infinite and semi-infinite bodies in the cylindrical coordinate system. The motivating applications for the present work include the line-source method for obtaining thermal properties, the estimation of thermal properties by the laser-flash method, and the estimation of aquifer properties or petroleum-field properties from welltest measurements. In this paper, the computer evaluation time is improved by replacing the integral-containing solution by a suitable finite-body series solution. The precision of the series solution may be controlled to a high level and the required computer time may be minimized, by a suitable choice of the extent of the finite body. The key finding of this paper is that the resulting series may be accurately evaluated with a fixed number of terms at any value of time, which removes a long-standing difficulty with series solution in general. The method is demonstrated for the one-dimensional case of a large body with a cylindrical hole and is extended to two-dimensional geometries of practical interest. The computer-evaluation time for the finite-body solutions are shown to be hundreds or thousands of time faster than the infinite-body solutions, depending on the geometry.

Original languageEnglish (US)
Article number121301
JournalJournal of Heat Transfer
Issue number12
StatePublished - Dec 1 2017


  • Green's function
  • heat conduction
  • improper integral
  • numerical methods
  • semi-infinite geometry

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Efficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems'. Together they form a unique fingerprint.

Cite this