Abstract
Skeletal muscle contraction evokes numerous biochemical alterations that underpin exercise benefits. This present study aimed to elucidate the mechanism for electrical pulse stimulation (EPS)-induced antioxidant adaptation in C2C12 myotubes. We found that EPS significantly upregulated Nrf2 and a broad array of downstream antioxidant enzymes involved in multiple antioxidant systems. These effects were completely abolished by pretreatment with a ROS scavenger, N-acetylcysteine. MitoSOX-Red, CM-H2DCFDA, and EPR spectroscopy revealed a significantly higher ROS level in mitochondria and cytosol in EPS cells compared to non-stimulated cells. Seahorse and Oroboros revealed that EPS significantly increased the maximal mitochondrial oxygen consumption rate, along with an upregulated protein expression of mitochondrial complexes I/V, mitofusin-1, and mitochondrial fission factor. A post-stimulation time-course experiment demonstrated that upregulated NQO1 and GSTA2 last at least 24 h following the cessation of EPS, whereas elevated ROS declines immediately. These findings suggest an antioxidant preconditioning effect in the EPS cells. A cell viability study suggested that the EPS cells displayed 11- and 36-fold higher survival rates compared to the control cells in response to 2 and 4 mM H2O2 treatment, respectively. In summary, we found that EPS upregulated a large group of antioxidant enzymes in C2C12 myotubes via a contraction-mitochondrial-ROS-Nrf2 pathway. This antioxidant adaptation protects cells against oxidative stress-associated cytotoxicity.
Original language | English (US) |
---|---|
Article number | 716 |
Journal | Antioxidants |
Volume | 13 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2024 |
Keywords
- Nrf2
- ROS
- antioxidant preconditioning
- cellular protection
- electrical pulse stimulation
- mitochondria
ASJC Scopus subject areas
- Food Science
- Physiology
- Biochemistry
- Molecular Biology
- Clinical Biochemistry
- Cell Biology