Electrically evoked compound action potential measures for virtual channels versus physical electrodes

Michelle L. Hughes, Adam M. Goulson

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Objectives: The number of distinct pitch percepts for cochlear implant (CI) listeners is somewhat limited by the number of physical electrodes in the array. Newer-generation CIs have the capability to potentially increase this number by stimulating areas of the cochlea between the physical electrodes. Currently, this is achieved by electrically coupling adjacent electrodes or by simultaneously activating two electrodes with independent current sources (i.e., current steering). Presumably, either type of dual-electrode stimulation will generate neural excitation patterns that are intermediate to those generated by either physical electrode alone (henceforth termed virtual channel). However, it is not clear whether virtual-channel stimulation yields neural recruitment patterns with similar shapes and rates of growth as compared with each physical electrode alone. The purpose of this study was to compare basic electrically evoked compound action potential (ECAP) measures for physical electrodes and virtual channels to determine whether properties of the respective excitation patterns were similar. Design: Data were collected for 12 adult CI recipients (six Nucleus Freedom CI24RE, two Advanced Bionics HiResolution 90K, and four Advanced Bionics CII). ECAP responses were measured for a set of three adjacent physical electrodes and two corresponding intermediate virtual channels (e.g., physical electrodes 4, 5, and 6 and virtual channels 4 + 5 and 5 + 6) at three positions along the electrode array (basal, middle, and apical). Virtual channels for Nucleus subjects were produced via electrical coupling of adjacent electrode pairs (dual-electrode mode). For Advanced Bionics subjects, virtual channels were produced via simultaneous, in-phase stimulation of adjacent electrode pairs with 50% of the total current delivered to each electrode in the pair. Specific ECAP measures were as follows: (1) threshold and slope of the input/output functions, (2) amplitude for a masker-probe interval of 1500 μsecs (measure of refractory recovery), and (3) relative location of spread of excitation (SOE) functions among virtual channels and adjacent physical electrodes. Measures for virtual channels were compared with those for the flanking physical electrodes using a multivariate analysis of variance. Results: There were no statistically significant differences between physical electrodes and virtual channels for ECAP thresholds, slope of the input/output function, or refractory recovery. On average, SOE functions for the virtual channels were spatially located approximately halfway between SOE functions for the adjacent physical electrodes. Conclusions: Results from this study suggest that virtual channels produce neural recruitment patterns with properties similar to those elicited by the adjacent physical electrodes.

Original languageEnglish (US)
Pages (from-to)323-330
Number of pages8
JournalEar and hearing
Volume32
Issue number3
DOIs
StatePublished - May 2011

ASJC Scopus subject areas

  • Otorhinolaryngology
  • Speech and Hearing

Fingerprint Dive into the research topics of 'Electrically evoked compound action potential measures for virtual channels versus physical electrodes'. Together they form a unique fingerprint.

Cite this