Abstract
TaON is considered as a potential candidate as a visible-light responsive photocatalyst. We report the results of ab initio studies of electronic structure of TaON-based alloys. Specifically, we show that the position of conduction and valence band can be modified by varying the oxygen and nitrogen concentrations in TaO1-xN1+x. We find that the band gap decreases monotonically with the increase of N/O ratio. The band gap energy is decreased in monoclinic TaON from near 2.3 eV to just over 1.7 eV (i.e., by 35%) when N/O ratio is increased from 3/5 to 5/3. Our calculations show that the band gap reduces in a series of experimentally fabricated alloys ZrTa 3O5N3→TaON→YTa7O 7N8. The band gap reduction is mostly associated with the change in the position of the valence band due to the hybridization of N 2p states, while the conduction band consisting mostly of Ta 5d-states is not sensitive to N content. The calculated optical absorption spectra show reduction in the optical band gap with increasing N/O ratio.
Original language | English (US) |
---|---|
Pages (from-to) | 337-343 |
Number of pages | 7 |
Journal | Journal of Solid State Chemistry |
Volume | 198 |
DOIs | |
State | Published - Feb 2013 |
Externally published | Yes |
Keywords
- First-principles calculations on the electronic and optical properties
- TaON-based alloys
- Visible-light responsive photocatalyst
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry