TY - GEN
T1 - Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation
AU - Engel, Aaron J.
AU - Bashford, Gregory R.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/11/4
Y1 - 2015/11/4
N2 - Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
AB - Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
UR - http://www.scopus.com/inward/record.url?scp=84953330515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84953330515&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2015.7319229
DO - 10.1109/EMBC.2015.7319229
M3 - Conference contribution
C2 - 26737129
AN - SCOPUS:84953330515
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 3831
EP - 3834
BT - 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Y2 - 25 August 2015 through 29 August 2015
ER -