Energy consumption and process sustainability of hard milling with tool wear progression

Z. Y. Liu, Y. B. Guo, M. P. Sealy, Z. Q. Liu

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Tool wear progression is inevitable in precision cutting. However, the effect of tool wear on energy consumption at machine, spindle, and process levels is yet to understand. In this study, specific energy in dry milling of AISI H13 was studied at the machine, spindle, and process levels. The effect of process parameters and tool wear progression on energy consumption at each level was investigated. The emissions and environmental impact induced by the machine tool's energy consumption and the cutting tool embodied energy were investigated. The results indicated that tool wear progression only has a predominant influence on energy consumption at the process level but not the machine and spindle levels. However, the cutting tool embodied energy had a significant effect on total specific energy, process emissions, and environmental impact in hard milling. The predictive models have been developed to quantify the relationships between material removal rate and specific energy, emissions, and environmental impact.

Original languageEnglish (US)
Pages (from-to)305-312
Number of pages8
JournalJournal of Materials Processing Technology
Volume229
DOIs
StatePublished - Mar 1 2016

Keywords

  • Emissions
  • Energy
  • Environmental impact
  • Machining
  • Sustainable manufacturing

ASJC Scopus subject areas

  • Ceramics and Composites
  • Computer Science Applications
  • Metals and Alloys
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Energy consumption and process sustainability of hard milling with tool wear progression'. Together they form a unique fingerprint.

Cite this