Engineered sumoylation-deficient prdx6 mutant protein-loaded nanoparticles provide increased cellular defense and prevent lens opacity

Bhavana Chhunchha, Eri Kubo, Uday B. Kompella, Dhirendra P. Singh

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Aberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K(lysine)122/142R(Arginine) linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6WT and Sumoylation-deficient Prdx6-loaded poly-lacticco-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery. We found that in vitro and subconjuctival delivery of Sumoylation-deficient Prdx6-NPs provided a greater protection of lens epithelial cells (LECs) derived from human and Prdx6−/−-deficient mouse lenses against oxidative stress, and it also delayed the lens opacity in Shumiya cataract rats (SCRs) than TAT-HA-Prdx6WT-NPs. The encapsulation efficiencies of TAT-HA-Prdx6-NPs were ≈56%–62%. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analyses showed that the NPs were spherical, with a size of 50–250 nm and a negative zeta potential (≈23 mV). TAT-HA-Prdx6 analog-NPs released bioactive TAT-HA-Prdx6 (6%–7%) within 24 h. Sumoylation-deficient TAT-HA-Prdx6-NPs provided 35% more protection by reducing the oxidative load of LECs exposed to H2O2 compared to TAT-HA-Prdx6WT-NPs. A subconjuctival delivery of TAT-HA-Prdx6 analog-NPs demonstrated that released TAT-HA-Prdx6K122/142R could reduce lens opacity by ≈60% in SCRs. Collectively, our results demonstrate for the first time that the subconjuctival delivery of Sumoylation-deficient Prdx6-NPs is efficiently cytoprotective and provide a proof of concept for potential use to delay cataract and oxidative-related pathobiology in general.

Original languageEnglish (US)
Article number1245
Issue number8
StatePublished - Aug 2021


  • Antioxidants
  • Nano-formulation
  • Nanoparticles
  • Oxidative stress
  • Peroxiredoxin 6
  • Protective mutation
  • Sumoylation
  • Transduction domain

ASJC Scopus subject areas

  • Food Science
  • Molecular Biology
  • Physiology
  • Biochemistry
  • Clinical Biochemistry
  • Cell Biology


Dive into the research topics of 'Engineered sumoylation-deficient prdx6 mutant protein-loaded nanoparticles provide increased cellular defense and prevent lens opacity'. Together they form a unique fingerprint.

Cite this