Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone

Mehdi Kazemzadeh-Narbat, Jeroen Rouwkema, Nasim Annabi, Hao Cheng, Masoumeh Ghaderi, Byung Hyun Cha, Mansi Aparnathi, Akbar Khalilpour, Batzaya Byambaa, Esmaiel Jabbari, Ali Tamayol, Ali Khademhosseini

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Engineering bone tissue requires the generation of a highly organized vasculature. Cellular behavior is affected by the respective niche. Directing cellular behavior and differentiation for creating mineralized regions surrounded by vasculature can be achieved by controlling the pattern of osteogenic and angiogenic niches. This manuscript reports on engineering vascularized bone tissues by incorporating osteogenic and angiogenic cell-laden niches in a photocrosslinkable hydrogel construct. Two-step photolithography process is used to control the stiffness of the hydrogel and distribution of cells in the patterned hydrogel. In addittion, osteoinductive nanoparticles are utilized to induce osteogenesis. The size of microfabricated constructs has a pronounced effect on cellular organization and function. It is shown that the simultaneous presence of both osteogenic and angiogenic niches in one construct results in formation of mineralized regions surrounded by organized vasculature. In addition, the presence of angiogenic niche improves bone formation. This approach can be used for engineered constructs that can be used for treatment of bone defects.

Original languageEnglish (US)
Article number1601122
JournalAdvanced Healthcare Materials
Volume6
Issue number10
DOIs
StatePublished - May 24 2017
Externally publishedYes

Keywords

  • bone tissue engineering
  • hydrogels
  • micropatterning
  • vascularization

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone'. Together they form a unique fingerprint.

Cite this