TY - JOUR
T1 - Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite
T2 - Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923
AU - Chokejaroenrat, Chanat
AU - Sakulthaew, Chainarong
AU - Satchasataporn, Khomson
AU - Snow, Daniel D.
AU - Ali, Tarik E.
AU - Assiri, Mohammed A.
AU - Watcharenwong, Apichon
AU - Imman, Saksit
AU - Suriyachai, Nopparat
AU - Kreetachat, Torpong
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Excessive antibiotic use in veterinary applications has resulted in water contamination and potentially poses a serious threat to aquatic environments and human health. The objective of the current study was to quantify carbonized leonardite (cLND) adsorption capabilities to remove sulfamethoxazole (SMX)- and enrofloxacin (ENR)-contaminated water and to determine the microbial activity of ENR residuals on cLND following adsorption. The cLND samples prepared at 450 °C and 850 °C (cLND450 and cLND550, respectively) were evaluated for structural and physical characteristics and adsorption capabilities based on adsorption kinetics and isotherm studies. The low pyrolysis temperature of cLND resulted in a heterogeneous surface that was abundant in both hydrophobic and hydrophilic functional groups. SMX and ENR adsorption were best described using a pseudo-second-order rate expression. The SMX and ENR adsorption equilibrium data on cLND450 and cLND550 revealed their better compliance with a Langmuir isotherm than with four other models based on 2.3-fold higher values of qmENR than qmSMX. Under the presence of the environmental interference, the electrostatic interaction was the main contributing factor to the adsorption capability. Microbial activity experiments based on the growth of Staphylococcus aureus ATCC 25923 revealed that cLND could successfully adsorb and subsequently retain the adsorbed antibiotic on the cLND surface. This study demonstrated the potential of cLND550 as a suitable low-cost adsorbent for the highly efficient removal of antibiotics from water.
AB - Excessive antibiotic use in veterinary applications has resulted in water contamination and potentially poses a serious threat to aquatic environments and human health. The objective of the current study was to quantify carbonized leonardite (cLND) adsorption capabilities to remove sulfamethoxazole (SMX)- and enrofloxacin (ENR)-contaminated water and to determine the microbial activity of ENR residuals on cLND following adsorption. The cLND samples prepared at 450 °C and 850 °C (cLND450 and cLND550, respectively) were evaluated for structural and physical characteristics and adsorption capabilities based on adsorption kinetics and isotherm studies. The low pyrolysis temperature of cLND resulted in a heterogeneous surface that was abundant in both hydrophobic and hydrophilic functional groups. SMX and ENR adsorption were best described using a pseudo-second-order rate expression. The SMX and ENR adsorption equilibrium data on cLND450 and cLND550 revealed their better compliance with a Langmuir isotherm than with four other models based on 2.3-fold higher values of qmENR than qmSMX. Under the presence of the environmental interference, the electrostatic interaction was the main contributing factor to the adsorption capability. Microbial activity experiments based on the growth of Staphylococcus aureus ATCC 25923 revealed that cLND could successfully adsorb and subsequently retain the adsorbed antibiotic on the cLND surface. This study demonstrated the potential of cLND550 as a suitable low-cost adsorbent for the highly efficient removal of antibiotics from water.
KW - adsorption isotherm
KW - adsorption kinetics
KW - antibiotic adsorption
KW - carbonization
KW - elovich
KW - enrofloxacin
KW - growth inhibition zone
KW - intraparticle diffusion
KW - leonardite
KW - sulfamethoxazole
UR - http://www.scopus.com/inward/record.url?scp=85138497413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138497413&partnerID=8YFLogxK
U2 - 10.3390/antibiotics11091261
DO - 10.3390/antibiotics11091261
M3 - Article
C2 - 36140040
AN - SCOPUS:85138497413
SN - 2079-6382
VL - 11
JO - Antibiotics
JF - Antibiotics
IS - 9
M1 - 1261
ER -