Environment aware connectivity for wireless underground sensor networks

Xin Dong, Mehmet C. Vuran

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

Wireless underground sensor networks (WUSNs) consist of sensors that are buried in and communicate through soil. The channel quality of WUSNs is strongly impacted by environmental parameters such soil moisture. Thus, the communication range of the nodes and the network connectivity vary over time. To address the challenges in underground communication, above ground nodes are deployed to maintain connectivity. In this paper, the connectivity of WUSNs under varying environmental conditions is captured by modeling the cluster size distribution under sub-critical conditions and through a novel aboveground communication coverage model for underground clusters. The resulting connectivity model is utilized to analyze two communication schemes: transmit power control and environment-aware routing, which maintain connectivity while reducing energy consumption. It is shown that transmit power control can maintain network connectivity under all soil moisture values at the cost of energy consumption. Utilizing relays based on soil moisture levels can decrease this energy consumption. A composite of both approaches is also considered to analyze the tradeoff between connectivity and energy consumption.

Original languageEnglish (US)
Title of host publication2013 Proceedings IEEE INFOCOM 2013
Pages674-682
Number of pages9
DOIs
StatePublished - 2013
Event32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013 - Turin, Italy
Duration: Apr 14 2013Apr 19 2013

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Conference

Conference32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013
Country/TerritoryItaly
CityTurin
Period4/14/134/19/13

ASJC Scopus subject areas

  • General Computer Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Environment aware connectivity for wireless underground sensor networks'. Together they form a unique fingerprint.

Cite this