Estimation of irrigation requirements for drip-irrigated maize in a sub-humid climate

Yang LIU, Hai shun YANG, Jiu sheng LI, Yan feng LI, Hai jun YAN

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is critical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip-irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.

Original languageEnglish (US)
Pages (from-to)677-692
Number of pages16
JournalJournal of Integrative Agriculture
Issue number3
StatePublished - Mar 2018


  • agro-climatic regionlization
  • crop simulation
  • drip irrigation
  • irrigation requirements
  • maize
  • sub-humid climate

ASJC Scopus subject areas

  • Food Science
  • Biochemistry
  • Ecology
  • Food Animals
  • Animal Science and Zoology
  • Agronomy and Crop Science
  • Plant Science


Dive into the research topics of 'Estimation of irrigation requirements for drip-irrigated maize in a sub-humid climate'. Together they form a unique fingerprint.

Cite this