Ethanol consumption decreases the synthesis of the mannose 6-phosphate/insulin-like growth factor II receptor but does not decrease its messenger RNA

James Haorah, Richard G. MacDonald, Julie A. Stoner, Terrence M. Donohue

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR) is a protein that facilitates the transport of acid hydrolases into the lysosome. We have shown that chronic ethanol consumption lowers the M6P/IGF-IIR content in rat hepatocytes. Here, we determined the steady-state level of mRNA encoding M6P/IGF-IIR, as well as the rate of receptor synthesis, to ascertain whether the ethanol-elicited reduction in receptor protein content is related to changes in either or both of these parameters. Rats were pair-fed the normal carbohydrate (NC) or low carbohydrate high-fat (LC) liquid diets containing either ethanol or isocaloric maltose-dextrin for 7-8 weeks. RNA was isolated from hepatocytes and from whole livers of these animals and subjected to reverse transcription-polymerase chain reaction (RT-PCR) to determine the mRNA levels encoding M6P/IGF-IIR. Hepatocytes isolated from these animals were also radiolabeled with Pro-mix L-[35S] in vitro cell labeling mix to measure incorporation into total cellular protein and the immunoprecipitated M6P/IGF-IIR protein. The steady-state levels of M6P/IGF-IIR mRNA in both hepatocytes and whole livers from ethanol-fed rats were the same as those from their respective controls regardless of whether they were fed the NC or the LC diets. Hepatocytes from ethanol-fed rats showed a 36% lower rate of total protein synthesis and an even greater reduction (70%) in receptor synthesis. When the relative rate of receptor synthesis was calculated, hepatocytes from ethanol-fed rats had a 53% lower relative rate of receptor synthesis compared with controls. Autoradiographic analysis of the immunoprecipitated receptor protein from ethanol-fed rats also indicated a 79% decline in the total M6P/IGF-IIR protein synthetic rate compared with pair-fed controls. We conclude that the ethanol-elicited reduction of M6P/IGF-IIR content was, in part, related to a concomitant reduction of receptor protein synthesis but not to a decline in its mRNA level. Thus, the ethanol-elicited decline in receptor protein synthesis may be due to defective M6P/IGF-IIR mRNA translation.

Original languageEnglish (US)
Pages (from-to)637-648
Number of pages12
JournalBiochemical Pharmacology
Volume65
Issue number4
DOIs
StatePublished - Feb 15 2003

    Fingerprint

Keywords

  • Liver
  • Low carbohydrate diet
  • Messenger RNA
  • RT-PCR

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology

Cite this