Experimental evaluation of self-expandable metallic tracheobronchial stents

Yanli Wang, Pengfei Dong, Jingyao Ke, Xiang Shen, Zongming Li, Kewei Ren, Xinwei Han, Linxia Gu

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


The self-expandable metallic stents have been widely used in tracheobronchial obstruction or fistulation, including the J-shaped and Y-shaped stents, named after the shape of the branch-stem junction of the stent. However, there is scarce data on the mechanical performance of these tracheobronchial stents, which is essential for optimal stent implantation. In this work, eight self-expandable metallic tracheobronchial stents in three types (i.e., straight, J-shaped, and Y-shaped), with or without cover, were characterized. The compression resistance of the stems was investigated through both compression and indentation tests. The bending resistance of the branches in the J-shaped and Y-shaped stents was assessed through the bending test. Our results demonstrated that the covered stents exhibited a significantly higher compression resistance and bending resistance than the uncovered ones. The branches had a minimal impact on the compression resistance of the stem. The branch of the J-shaped stent showed a significantly lower bending resistance than the Y shaped one. This work provides a testing framework for the J-shaped and Y-shaped stents,which could shed some light on the optimal design of stent with branches.

Original languageEnglish (US)
Pages (from-to)136-142
Number of pages7
JournalNanotechnology Reviews
Issue number1
StatePublished - Jan 1 2019


  • J-shaped
  • Y-shaped
  • bending resistance
  • covered stent
  • self-expandable metallic tracheobronchial stent

ASJC Scopus subject areas

  • Biotechnology
  • Medicine (miscellaneous)
  • Materials Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Engineering (miscellaneous)
  • Process Chemistry and Technology


Dive into the research topics of 'Experimental evaluation of self-expandable metallic tracheobronchial stents'. Together they form a unique fingerprint.

Cite this