TY - JOUR
T1 - Expression of the insulin receptor with a recombinant vaccinia virus
T2 - Biochemical evidence that the insulin receptor has intrinsic serine kinase activity
AU - Tauer, Thomas J.
AU - Volle, Deanna J.
AU - Rhode, Solon L.
AU - Lewis, Robert E.
PY - 1996/1/5
Y1 - 1996/1/5
N2 - We have previously reported the tight association of a serine kinase activity with the human insulin receptor (Lewis, R. E., Wu, G. P., MacDonald, R G., and Czech, M. P. (1990) J. Biol. Chem. 265, 947-954). We tested the possibility that the associated serine kinase activity was intrinsic to the receptor catalytic domain. The ratio of phosphoserine to phosphotyrosine on insulin receptors phosphorylated in vitro was used as an index of the associated serine kinase activity. Phosphorylation and phosphoamino acid analysis of insulin proreceptors revealed associated serine kinase activity early in receptor synthesis. Insulin receptors were expressed in HeLa cells using a recombinant vaccinia virus. The ratio of phosphoserine to phosphotyrosine on insulin receptors expressed by the recombinant vaccinia virus was determined relative to endogenous insulin receptors in cells treated with α-amanitin to block host cell mRNA synthesis. α-Amanitin treatment had no effect on the ratio of phosphoserine to phosphotyrosine on insulin receptors expressed from the recombinant virus even though they were present in a 4000-fold excess above endogenous receptors. We conclude that the serine kinase activity associated with the insulin receptor is intrinsic to the receptor catalytic domain. Receptor-catalyzed autophosphorylation of serine may play an important role in modulating insulin receptor signaling.
AB - We have previously reported the tight association of a serine kinase activity with the human insulin receptor (Lewis, R. E., Wu, G. P., MacDonald, R G., and Czech, M. P. (1990) J. Biol. Chem. 265, 947-954). We tested the possibility that the associated serine kinase activity was intrinsic to the receptor catalytic domain. The ratio of phosphoserine to phosphotyrosine on insulin receptors phosphorylated in vitro was used as an index of the associated serine kinase activity. Phosphorylation and phosphoamino acid analysis of insulin proreceptors revealed associated serine kinase activity early in receptor synthesis. Insulin receptors were expressed in HeLa cells using a recombinant vaccinia virus. The ratio of phosphoserine to phosphotyrosine on insulin receptors expressed by the recombinant vaccinia virus was determined relative to endogenous insulin receptors in cells treated with α-amanitin to block host cell mRNA synthesis. α-Amanitin treatment had no effect on the ratio of phosphoserine to phosphotyrosine on insulin receptors expressed from the recombinant virus even though they were present in a 4000-fold excess above endogenous receptors. We conclude that the serine kinase activity associated with the insulin receptor is intrinsic to the receptor catalytic domain. Receptor-catalyzed autophosphorylation of serine may play an important role in modulating insulin receptor signaling.
UR - http://www.scopus.com/inward/record.url?scp=0030060798&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030060798&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.1.331
DO - 10.1074/jbc.271.1.331
M3 - Article
C2 - 8550582
AN - SCOPUS:0030060798
SN - 0021-9258
VL - 271
SP - 331
EP - 336
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 1
ER -