Extracellular Matrix Secretion Mechanically Reinforces Interlocking Interfaces

Alec McCarthy, Navatha Shree Sharma, Phil A. Holubeck, Demi Brown, Rajesh Shah, Daniel McGoldrick, Johnson V. John, S. M.Shatil Shahriar, Jingwei Xie

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Drawing inspiration for biomaterials from biological systems has led to many biomedical innovations. One notable bioinspired device, Velcro, consists of two substrates with interlocking ability. Generating reversibly interlocking biomaterials is an area of investigation, as such devices can allow for modular tissue engineering, reversibly interlocking biomaterial interfaces, or friction-based coupling devices. Here, a biaxially interlocking interface generated using electrostatic flocking is reported. Two electrostatically flocked substrates are mechanically and reversibly interlocked with the ability to resist shearing and compression forces. An initial high-throughput screen of polyamide flock fibers with varying diameters and fiber lengths is conducted to elucidate the roles of different fiber parameters on scaffold mechanical properties. After determining the most desirable parameters via weight scoring, polylactic acid (PLA) fibers are used to emulate the ideal scaffold for in vitro use. PLA flocked scaffolds are populated with osteoblasts and interlocked. Interlocked flocked scaffolds improved cell survivorship under mechanical compression and sustained cell viability and proliferation. Additionally, the compression and shearing resistance of cell-seeded interlocking interfaces increased with increasing extracellular matrix deposition. The introduction of extracellular matrix-reinforced interlocking interfaces may serve as binders for modular tissue engineering, act as scaffolds for engineering tissue interfaces, or enable friction-based couplers for biomedical applications.

Original languageEnglish (US)
Article number2207335
JournalAdvanced Materials
Volume35
Issue number5
DOIs
StatePublished - Feb 2 2023

Keywords

  • compression shielding
  • electrostatic flocking
  • extracellular matrix
  • interlocking interface
  • mechanical reinforcement

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Extracellular Matrix Secretion Mechanically Reinforces Interlocking Interfaces'. Together they form a unique fingerprint.

Cite this