TY - JOUR
T1 - Fabrication and characterization of DNA-loaded zein nanospheres
AU - Regier, Mary C.
AU - Taylor, Jessica D.
AU - Borcyk, Tyler
AU - Yang, Yiqi
AU - Pannier, Angela K.
N1 - Funding Information:
Support for this research was provided in part by funds from the American Heart Association, the University of Nebraska Foundation (Layman Funds), the Nebraska Research Initiative, USDA CSREES-Nebraska (NEB-21-146), and the Institute of Agriculture and Natural Resources Seed Grant Program. Confocal and scanning electron microscopy were performed at the University of Nebraska-Lincoln’s Center for Biotechnology Morrison Microscopy Core Research Facility and we thank Dr. You Zhou and Dr. Han Chen for assistance with imaging. We thank Dr. Shannon Bartelt-Hunt for the use of the Zetasizer, Dr. Curtis Weller for the use of the lyophilizer, Tadas Kasputis, Tim Martin, Sarah Plautz, and Dr. Qiuran Jiang for assistance with cell studies and Dr. Zhongji Han for imaging gels.
PY - 2012/12/2
Y1 - 2012/12/2
N2 - Background: Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results: Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions: This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and microspheres. The hydrophobic nature of zein resulted in spheres capable of sustained release of plasmid DNA. Zein particles may be an excellent potential tool for the delivery of DNA with the ability to be fine-tuned for specific applications including oral gene delivery, intramuscular delivery, and in the fabrication of tissue engineering scaffolds.
AB - Background: Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results: Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions: This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and microspheres. The hydrophobic nature of zein resulted in spheres capable of sustained release of plasmid DNA. Zein particles may be an excellent potential tool for the delivery of DNA with the ability to be fine-tuned for specific applications including oral gene delivery, intramuscular delivery, and in the fabrication of tissue engineering scaffolds.
KW - DNA
KW - Gene delivery
KW - Intramuscular injection
KW - Nanoparticle
KW - Nonviral
KW - Oral delivery
KW - Zein
UR - http://www.scopus.com/inward/record.url?scp=84870210050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870210050&partnerID=8YFLogxK
U2 - 10.1186/1477-3155-10-44
DO - 10.1186/1477-3155-10-44
M3 - Article
C2 - 23199119
AN - SCOPUS:84870210050
SN - 1477-3155
VL - 10
JO - Journal of Nanobiotechnology
JF - Journal of Nanobiotechnology
M1 - 44
ER -