TY - JOUR
T1 - Feedback from horizontal cells to rod photoreceptors in vertebrate retina
AU - Thoreson, Wallace B.
AU - Babai, Norbert
AU - Bartoletti, Theodore M.
PY - 2008/5/28
Y1 - 2008/5/28
N2 - Retinal horizontal cells (HCs) provide negative feedback to cones, but, largely because annular illumination fails to evoke a depolarizing response in rods, it is widely believed that there is no feedback from HCs to rods. However, feedback from HCs to cones involves small changes in the calcium current (ICa) that do not always generate detectable depolarizing responses. We therefore recorded ICa directly from rods to test whether they were modulated by feedback from HCs. To circumvent problems presented by overlapping receptive fields of HCs and rods, we manipulated the membrane potential of voltage-clamped HCs while simultaneously recording from rods in a salamander retinal slice preparation. Like HC feedback in cones, hyperpolarizing HCs from -14 to -54, -84, and -104 mV increased the amplitude of ICa recorded from synaptically connected rods and caused hyperpolarizing shifts in ICa voltage dependence. These effects were blocked by supplementing the bicarbonate-buffered saline solution with HEPES. In rods lacking light-responsive outer segments, hyperpolarizing neighboring HCs with light caused a negative activation shift and increased the amplitude of I Ca. These changes in ICa were blocked by HEPES and by inhibiting HC light responses with a glutamate antagonist, indicating that they were caused by HC feedback. These results show that rods, like cones, receive negative feedback from HCs that regulates the amplitude and voltage dependence of ICa. HC-to-rod feedback counters light-evoked decreases in synaptic output and thus shapes the transmission of rod responses to downstream visual neurons.
AB - Retinal horizontal cells (HCs) provide negative feedback to cones, but, largely because annular illumination fails to evoke a depolarizing response in rods, it is widely believed that there is no feedback from HCs to rods. However, feedback from HCs to cones involves small changes in the calcium current (ICa) that do not always generate detectable depolarizing responses. We therefore recorded ICa directly from rods to test whether they were modulated by feedback from HCs. To circumvent problems presented by overlapping receptive fields of HCs and rods, we manipulated the membrane potential of voltage-clamped HCs while simultaneously recording from rods in a salamander retinal slice preparation. Like HC feedback in cones, hyperpolarizing HCs from -14 to -54, -84, and -104 mV increased the amplitude of ICa recorded from synaptically connected rods and caused hyperpolarizing shifts in ICa voltage dependence. These effects were blocked by supplementing the bicarbonate-buffered saline solution with HEPES. In rods lacking light-responsive outer segments, hyperpolarizing neighboring HCs with light caused a negative activation shift and increased the amplitude of I Ca. These changes in ICa were blocked by HEPES and by inhibiting HC light responses with a glutamate antagonist, indicating that they were caused by HC feedback. These results show that rods, like cones, receive negative feedback from HCs that regulates the amplitude and voltage dependence of ICa. HC-to-rod feedback counters light-evoked decreases in synaptic output and thus shapes the transmission of rod responses to downstream visual neurons.
KW - Calcium current
KW - Feedback
KW - Horizontal cell
KW - Scotopic vision
KW - Synaptic transmission
KW - pH
UR - http://www.scopus.com/inward/record.url?scp=45949101099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45949101099&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0403-08.2008
DO - 10.1523/JNEUROSCI.0403-08.2008
M3 - Article
C2 - 18509030
AN - SCOPUS:45949101099
SN - 0270-6474
VL - 28
SP - 5691
EP - 5695
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 22
ER -