TY - JOUR
T1 - Fibroblast tissue factor
T2 - Calcium and ionophore induce shape changes, release of membrane vesicles, and redistribution of tissue factor antigen in addition to increased procoagulant activity
AU - Carson, Steven D.
AU - Perry, Greg A.
AU - Pirruccello, Samuel J.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1994/7/15
Y1 - 1994/7/15
N2 - The coagulant activity of tissue factor (TF) in the membranes of cultured cells is increased after physical disruption of the cells, and a similar increase can be elicited by treatment of cell cultures with calcium ionophore and calcium. We observed that the supernatants of cultures treated with calcium and ionophore 4-Br-A23187 contained more TF activity than those of control cultures. Phase contrast microscopy showed that cultures treated with ionophore and calcium contained rounded cells, membrane vesicles, and cell fragments. Laser-activated fluorescence microscopy of cells stained for tissue factor antigen showed that 4-Br-A23187, in the presence of 5 mmol/L calcium, caused progressive changes in cell morphology. Treatment of cultures with thrombin receptor agonist peptide caused a transient increase in cytoplasmic calcium, but had no short-term effect on TF activity or cell morphology. These combined results show that 4-Br-A23187, with extracellular calcium, increases TF activity concomitant with dramatic changes in cell morphology and the plasma membrane. The effect of increased cytoplasmic calcium on TF expression may therefore be similar in mechanism to other models of cell injury and may be caused by the effects of a sustained increase of cytosolic calcium on cellular elements that influence membrane stability and the distribution of TF per se.
AB - The coagulant activity of tissue factor (TF) in the membranes of cultured cells is increased after physical disruption of the cells, and a similar increase can be elicited by treatment of cell cultures with calcium ionophore and calcium. We observed that the supernatants of cultures treated with calcium and ionophore 4-Br-A23187 contained more TF activity than those of control cultures. Phase contrast microscopy showed that cultures treated with ionophore and calcium contained rounded cells, membrane vesicles, and cell fragments. Laser-activated fluorescence microscopy of cells stained for tissue factor antigen showed that 4-Br-A23187, in the presence of 5 mmol/L calcium, caused progressive changes in cell morphology. Treatment of cultures with thrombin receptor agonist peptide caused a transient increase in cytoplasmic calcium, but had no short-term effect on TF activity or cell morphology. These combined results show that 4-Br-A23187, with extracellular calcium, increases TF activity concomitant with dramatic changes in cell morphology and the plasma membrane. The effect of increased cytoplasmic calcium on TF expression may therefore be similar in mechanism to other models of cell injury and may be caused by the effects of a sustained increase of cytosolic calcium on cellular elements that influence membrane stability and the distribution of TF per se.
UR - http://www.scopus.com/inward/record.url?scp=0028277701&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028277701&partnerID=8YFLogxK
U2 - 10.1182/blood.v84.2.526.526
DO - 10.1182/blood.v84.2.526.526
M3 - Article
C2 - 8025281
AN - SCOPUS:0028277701
SN - 0006-4971
VL - 84
SP - 526
EP - 534
JO - Blood
JF - Blood
IS - 2
ER -