Finite element modeling of hybrid additive manufacturing by laser shock peening

M. P. Sealy, G. Madireddy, C. Li, Y. B. Guo

Research output: Contribution to conferencePaperpeer-review

17 Scopus citations

Abstract

Hybrid manufacturing has traditionally targeted efficiency and productivity as improvement criteria. However, the advent of additive manufacturing to print functional parts has expanded the possibilities for a hybrid approach in this field. Hybrid additive manufacturing is the combination of two or more manufacturing processes or materials that synergistically affect the quality and performance of a printed part. Hybrid additive manufacturing allows for advancements in material properties beyond efficiency and productivity. Mechanical, physical, and chemical properties can be designed and printed. The purpose of this study was to model a hybrid additive manufacturing process to investigate the resulting mechanical properties. Laser shock peening (LSP) was coupled with selective laser melting in a 2D finite element simulation in Abaqus to quantify the resulting residual stress fields. The effects of peak pressure and layer thickness were studied when coupling laser shock peening with selective laser melting.

Original languageEnglish (US)
Pages306-316
Number of pages11
StatePublished - 2016
Event27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016 - Austin, United States
Duration: Aug 8 2016Aug 10 2016

Conference

Conference27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016
Country/TerritoryUnited States
CityAustin
Period8/8/168/10/16

Keywords

  • Hybrid
  • Laser shock peening
  • Residual stress
  • SLM
  • Ti64

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Finite element modeling of hybrid additive manufacturing by laser shock peening'. Together they form a unique fingerprint.

Cite this