TY - JOUR
T1 - Fluorescence energy transfer between the primer and the β subunit of the DNA polymerase III holoenzyme
AU - Griep, Mark A.
AU - McHenry, Charles S.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1992/2/15
Y1 - 1992/2/15
N2 - We report here our initial success in using fluorescence energy transfer to map the position of the subunits of the DNA polymerase III holoenzyme within initiation complexes formed on primed DNA. Using primers containing a fluorescent derivative 3 nucleotides from the 3′-terminus and acceptors of fluorescence energy transfer located on Cys333 of the β subunit, a donor-acceptor distance of 65 Å was measured. Coupling this distance with other information enabled us to propose a model for the positioning of β within initiation complexes. Examination of the fluorescence properties of a labeled primer with the unlabeled β subunit and other assemblies of DNA polymerase III holoenzyme subunits allowed us to distinguish all of the known intermediates of the holoenzyme-catalyzed reaction. Specific fluorescence changes could be assigned for primer annealing, Escherichia coli single-stranded DNA-binding protein binding, 3′ → 5′ exonucleolytic hydrolysis of the primer, DNA polymerase III* binding, initiation complex formation upon the addition of β in the presence of ATP, and DNA elongation. These fluorescence changes are sufficiently large to support future detailed kinetic studies. Particularly interesting was the difference in fluorescence changes accompanying initiation complex formation as compared to binding of DNA polymerase III holoenzyme subunit assemblies. Initiation complex formation resulted in a strong fluorescence enhancement. Binding of DNA polymerase III* led to a fluorescence quenching, and transfer of β to primed DNA by the γδ complex did not change the fluorescence. This demonstrates a rearrangement of subunits accompanying initiation complex formation. Monitoring fluorescence changes with labeled β, we have determined that β binds with a stoichiometry of one monomer/primer terminus.
AB - We report here our initial success in using fluorescence energy transfer to map the position of the subunits of the DNA polymerase III holoenzyme within initiation complexes formed on primed DNA. Using primers containing a fluorescent derivative 3 nucleotides from the 3′-terminus and acceptors of fluorescence energy transfer located on Cys333 of the β subunit, a donor-acceptor distance of 65 Å was measured. Coupling this distance with other information enabled us to propose a model for the positioning of β within initiation complexes. Examination of the fluorescence properties of a labeled primer with the unlabeled β subunit and other assemblies of DNA polymerase III holoenzyme subunits allowed us to distinguish all of the known intermediates of the holoenzyme-catalyzed reaction. Specific fluorescence changes could be assigned for primer annealing, Escherichia coli single-stranded DNA-binding protein binding, 3′ → 5′ exonucleolytic hydrolysis of the primer, DNA polymerase III* binding, initiation complex formation upon the addition of β in the presence of ATP, and DNA elongation. These fluorescence changes are sufficiently large to support future detailed kinetic studies. Particularly interesting was the difference in fluorescence changes accompanying initiation complex formation as compared to binding of DNA polymerase III holoenzyme subunit assemblies. Initiation complex formation resulted in a strong fluorescence enhancement. Binding of DNA polymerase III* led to a fluorescence quenching, and transfer of β to primed DNA by the γδ complex did not change the fluorescence. This demonstrates a rearrangement of subunits accompanying initiation complex formation. Monitoring fluorescence changes with labeled β, we have determined that β binds with a stoichiometry of one monomer/primer terminus.
UR - http://www.scopus.com/inward/record.url?scp=0026739442&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026739442&partnerID=8YFLogxK
M3 - Article
C2 - 1737760
AN - SCOPUS:0026739442
SN - 0021-9258
VL - 267
SP - 3052
EP - 3059
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 5
ER -