Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism

Zhuhua Zhang, Xiao Cheng Zeng, Wanlin Guo

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Cubic boron nitride (c-BN) possesses a number of extreme properties rivaling or surpassing those of diamond. Especially, owing to the high chemical stability, c-BN is desired for fabricating electronic devices that can stand up to harsh environments. However, realization of c-BN-based functional devices is still a challenging task due largely to the subtlety in the preparation of high-quality c-BN films with uniform thickness and controllable properties. Here, we present a simple synthetic strategy by surface fluorination of few-layered hexagonal boron nitride (h-BN) sheets to produce thermodynamically favorable F-terminated c-BN nanofilms with an embedded N-N bond layer and strong inbuilt electric polarization. Due to these specific features, the fluorinated c-BN nanofilms have controllable band gap by thickness or inbuilt and applied electric fields. Especially, the produced nanofilms can be tuned into substantial ferromagnetism through electron doping within a reasonable level. The electron-doping-induced deformation ratio of the c-BN nanofilms is found to be 1 order of magnitude higher than those of carbon nanotubes and graphene. At sufficient high doping levels, the nanofilm can be cleaved peculiarly along the N-N bond layer into diamond-like BN films. As the proposed synthesis strategy of the fluorinated c-BN nanofilms is well within the reach of current technologies, our results represent an extremely cost-effective approach for producing high-quality c-BN nanofilms with tunable electronic, magnetic, and electromechanical properties for versatile applications.

Original languageEnglish (US)
Pages (from-to)14831-14838
Number of pages8
JournalJournal of the American Chemical Society
Volume133
Issue number37
DOIs
StatePublished - Sep 21 2011

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism'. Together they form a unique fingerprint.

Cite this