TY - JOUR
T1 - Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signaling in immature rat Sertoli cells
AU - Khan, Shafiq A.
AU - Ndjountche, Lilianne
AU - Pratchard, Lauren
AU - Spicer, L. J.
AU - Davis, John S.
PY - 2002
Y1 - 2002
N2 - FSH and IGF-I are both important determinants of testicular development and Sertoli cell function. The present studies were performed to determine the actions of FSH and IGF-I on PI3K/AKT protein kinase signaling in immature rat Sertoli cells. Primary cultures of rat Sertoli cells were prepared from 10-d-old rats. After 7 d in culture, Sertoli cells were treated with IGF-I, FSH, or IGF-I plus FSH. In some experiments cultures were treated with 8-bromo-cAMP (40 μM), (Bu)2cAMP (40 μM), or forskolin (10 μM). After treatments, cell lysates were prepared, and the activation state of AKT and cAMP response element-binding protein (CREB) was determined by Western blot analysis using phosphorylation site-specific antibodies. IGF-I had little effect on CREB phosphorylation, but rapidly increased the phosphorylation of AKT in a concentration-dependent manner. Maximal stimulatory effects of IGF-I were observed at 10-20 ng/ml. Treatment with FSH (0.9 IU/ml) or forskolin for 20 min increased CREB phosphorylation, but had little effect on AKT phosphorylation. However, FSH caused a concentration-dependent increase in IGF-I-induced AKT phosphorylation. Longer incubations (1-4 h) with FSH alone resulted in the elevation of AKT phosphorylation concomitant with an increased secretion of IGF-I and decreased production of IGF-binding protein-3, implicating endogenous IGF-I in the action of FSH on AKT phosphorylation. IGF-I- and FSH-dependent AKT phosphorylation was inhibited by LY29400 (10 μM), a PI3K inhibitor, and by IGF-binding protein 3, but not by a PKA inhibitor (H89). The present study demonstrates that immature rat Sertoli cells possess multiple protein kinase signaling cascades that are regulated by FSH. Furthermore, FSH amplifies IGF-I-mediated PI3K/AKT signaling in Sertoli cells. The results provide evidence for intracellular signaling mechanisms that may be required for the proliferation and differentiation of Sertoli cells.
AB - FSH and IGF-I are both important determinants of testicular development and Sertoli cell function. The present studies were performed to determine the actions of FSH and IGF-I on PI3K/AKT protein kinase signaling in immature rat Sertoli cells. Primary cultures of rat Sertoli cells were prepared from 10-d-old rats. After 7 d in culture, Sertoli cells were treated with IGF-I, FSH, or IGF-I plus FSH. In some experiments cultures were treated with 8-bromo-cAMP (40 μM), (Bu)2cAMP (40 μM), or forskolin (10 μM). After treatments, cell lysates were prepared, and the activation state of AKT and cAMP response element-binding protein (CREB) was determined by Western blot analysis using phosphorylation site-specific antibodies. IGF-I had little effect on CREB phosphorylation, but rapidly increased the phosphorylation of AKT in a concentration-dependent manner. Maximal stimulatory effects of IGF-I were observed at 10-20 ng/ml. Treatment with FSH (0.9 IU/ml) or forskolin for 20 min increased CREB phosphorylation, but had little effect on AKT phosphorylation. However, FSH caused a concentration-dependent increase in IGF-I-induced AKT phosphorylation. Longer incubations (1-4 h) with FSH alone resulted in the elevation of AKT phosphorylation concomitant with an increased secretion of IGF-I and decreased production of IGF-binding protein-3, implicating endogenous IGF-I in the action of FSH on AKT phosphorylation. IGF-I- and FSH-dependent AKT phosphorylation was inhibited by LY29400 (10 μM), a PI3K inhibitor, and by IGF-binding protein 3, but not by a PKA inhibitor (H89). The present study demonstrates that immature rat Sertoli cells possess multiple protein kinase signaling cascades that are regulated by FSH. Furthermore, FSH amplifies IGF-I-mediated PI3K/AKT signaling in Sertoli cells. The results provide evidence for intracellular signaling mechanisms that may be required for the proliferation and differentiation of Sertoli cells.
UR - http://www.scopus.com/inward/record.url?scp=0036090357&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036090357&partnerID=8YFLogxK
U2 - 10.1210/endo.143.6.8838
DO - 10.1210/endo.143.6.8838
M3 - Article
C2 - 12021190
AN - SCOPUS:0036090357
SN - 0013-7227
VL - 143
SP - 2259
EP - 2267
JO - Endocrinology
JF - Endocrinology
IS - 6
ER -