TY - JOUR
T1 - Francisella tularensis universal stress protein contributes to persistence during growth arrest and paraquat-induced superoxide stress
AU - Girardo, Benjamin
AU - Yue, Yinshi
AU - Lockridge, Oksana
AU - Bartling, Amanda M.
AU - Schopfer, Lawrence M.
AU - Augusto, Leonardo
AU - Larson, Marilynn A.
N1 - Publisher Copyright:
Copyright © 2025 Girardo et al.
PY - 2025/2
Y1 - 2025/2
N2 - Francisella tularensis is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by F. tularensis to persist are not fully understood. To address this aspect, we evaluated the highly conserved universal stress protein (Usp) that is encoded by a single-copy gene in F. tularensis, unlike the majority of other bacterial pathogens that produce several to many Usp homologs. We determined that the F. tularensis Usp transcript is unusually stable with a half-life of over 30 minutes, and that usp transcript and protein levels remained abundant when exposed to low pH, nutrient deprivation, hydrogen peroxide, and paraquat. Of these and other stress conditions evaluated, the F. tularensis Δusp mutant only exhibited reduced survival relative to the wild type during stationary phase and exposure to paraquat, a highly toxic compound that generates superoxide anions and other free radicals. Comparison of transcript levels in untreated and paraquat-treated F. tularensis wild type and Δusp indicated that Usp contributes to enhanced expression of antioxidant defense genes, oxyR and katG. In summary, the high abundance and stability of Usp provide prompt protection during extended periods of growth arrest and free radical exposure, promoting F. tularensis persistence. We propose that F. tularensis Usp contributes to an adaptive response that prolongs viability and increases the longevity of this zoonotic pathogen in the environment. IMPORTANCE Francisella tularensis is classified as a Tier 1 select agent due to the low infectious dose, ease of transmission, and potential use as a bioweapon. To better understand the stress defense mechanisms that contribute to the ability of this highly virulent pathogen to persist, we evaluated the conserved F. tularensis universal stress protein (Usp). We show that F. tularensis Usp is unusually stable and remains abundant, regardless of the stress conditions tested, differing from other bacterial Usp homologs. We also determined that F. tularensis Usp enhances the expression of several critical antioxidant defense genes and increases survival during paraquat exposure and growth arrest. Determining the factors that promote F. tularensis persistence in the environment is needed to prevent tularemia transmission.
AB - Francisella tularensis is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by F. tularensis to persist are not fully understood. To address this aspect, we evaluated the highly conserved universal stress protein (Usp) that is encoded by a single-copy gene in F. tularensis, unlike the majority of other bacterial pathogens that produce several to many Usp homologs. We determined that the F. tularensis Usp transcript is unusually stable with a half-life of over 30 minutes, and that usp transcript and protein levels remained abundant when exposed to low pH, nutrient deprivation, hydrogen peroxide, and paraquat. Of these and other stress conditions evaluated, the F. tularensis Δusp mutant only exhibited reduced survival relative to the wild type during stationary phase and exposure to paraquat, a highly toxic compound that generates superoxide anions and other free radicals. Comparison of transcript levels in untreated and paraquat-treated F. tularensis wild type and Δusp indicated that Usp contributes to enhanced expression of antioxidant defense genes, oxyR and katG. In summary, the high abundance and stability of Usp provide prompt protection during extended periods of growth arrest and free radical exposure, promoting F. tularensis persistence. We propose that F. tularensis Usp contributes to an adaptive response that prolongs viability and increases the longevity of this zoonotic pathogen in the environment. IMPORTANCE Francisella tularensis is classified as a Tier 1 select agent due to the low infectious dose, ease of transmission, and potential use as a bioweapon. To better understand the stress defense mechanisms that contribute to the ability of this highly virulent pathogen to persist, we evaluated the conserved F. tularensis universal stress protein (Usp). We show that F. tularensis Usp is unusually stable and remains abundant, regardless of the stress conditions tested, differing from other bacterial Usp homologs. We also determined that F. tularensis Usp enhances the expression of several critical antioxidant defense genes and increases survival during paraquat exposure and growth arrest. Determining the factors that promote F. tularensis persistence in the environment is needed to prevent tularemia transmission.
KW - Francisella tularensis
KW - catalase
KW - growth arrest
KW - oxidative stress defense
KW - paraquat
KW - reactive oxygen species
KW - superoxide anions
KW - tularemia
KW - universal stress protein (Usp)
UR - http://www.scopus.com/inward/record.url?scp=85218997648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218997648&partnerID=8YFLogxK
U2 - 10.1128/jb.00377-24
DO - 10.1128/jb.00377-24
M3 - Article
C2 - 39846732
AN - SCOPUS:85218997648
SN - 0021-9193
VL - 207
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 2
M1 - e00377-24
ER -