Friction and orthodontic mechanics: Clinical studies of moment and ligation effects

Laura R. Iwasaki, Mark W. Beatty, Jeffrey C. Nickel

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The efficiency of tooth movement associated with orthodontic sliding mechanics can be compromised by friction between arch wire and tube or bracket slot. The described studies measured the apparent coefficient of static friction (μa) during sliding along an arch wire. Known moments were applied to simulate tooth tipping. Measurements tested whether intraoral vibration during gum chewing reduced friction. The first experiments measured intraoral friction associated with the sliding of 4 and 8 mm stainless steel (SS) tubes along a SS auxiliary arch wire, in 10 subjects. Mean intraoral μa for 4 and 8 mm tubes were 0.12 (SD = 0.04) and 0.17 (SD = 0.05), respectively. Analysis of variance (ANOVA) showed that μa was significantly higher (P < 0.001) for the longer tubes. Although intraoral vibration decreased μa compared with bench-top tests (P < 0.001), frictional resistance was never completely eliminated. The second experiments studied the effects of ligation. Ten professionals performed exercises to characterize average tight and loose SS ligation forces. These ligation forces (FNLigation), and those associated with elastic ligation, were reproduced by a calibrated operator in a modified intraoral device, where SS orthodontic brackets slid along a SS auxiliary wire. Ten subjects chewed gum with the device in place. Nested ANOVA and Tukey Honest Significant Difference tests determined the effects of ligation type and environment. No significant differences (P > 0.01) were found between ex vivo and intraoral μa values for tight and loose SS ligation. Intraoral values for μa were significantly greater than ex vivo values (P < 0.001) for elastic ligation. Overall, the results suggested that vibration introduced by gum chewing did not eliminate friction. Tipping moments and ligation forces were equally significant in determining frictional forces. As well, there was considerable intraoperator variation in FNLigation for SS ligatures. Variations in clinical ligation forces are likely to be equal or greater than these experimental data and have potential to affect treatment efficiency during orthodontic sliding mechanics.

Original languageEnglish (US)
Pages (from-to)290-297
Number of pages8
JournalSeminars in Orthodontics
Issue number4
StatePublished - Dec 2003

ASJC Scopus subject areas

  • Orthodontics


Dive into the research topics of 'Friction and orthodontic mechanics: Clinical studies of moment and ligation effects'. Together they form a unique fingerprint.

Cite this