TY - JOUR
T1 - Functional analysis of cancer-associated DNA polymerase ε variants in Saccharomyces cerevisiae
AU - Barbari, Stephanie R.
AU - Kane, Daniel P.
AU - Moore, Elizabeth A.
AU - Shcherbakova, Polina V.
N1 - Funding Information:
We thank Krista Brown for technical assistance and Youri Pavlov for the YEpPOL2 plasmid. This work was supported by the National Institutes of Health grant ES015869 to P.V.S. S.R.B. was supported by the Cancer Biology Training Grant T32CA009476 from the National Cancer Institute.
Publisher Copyright:
© 2018 Barbari et al.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε). They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, Polε-P286R, in yeast produced an unexpectedly strong mutator effect that exceeded the effect of proofreading deficiency by two orders of magnitude and indicated the involvement of other infidelity factors. The in vivo consequences of many additional Polε mutations reported in cancers remain poorly understood. Here, we genetically characterized 13 cancer-associated Polε variants in the yeast system. Only variants directly altering the DNA binding cleft in the exonuclease domain elevated the mutation rate. Among these, frequently recurring variants were stronger mutators than rare variants, in agreement with the idea that mutator phenotype has a causative role in tumorigenesis. In nearly all cases, the mutator effects exceeded those of an exonuclease-null allele, suggesting that mechanisms distinct from loss of proofreading may drive the genome instability in most ultramutated tumors. All mutator alleles were semidominant, supporting the view that heterozygosity for the polymerase mutations is sufficient for tumor development. In contrast to the DNA binding cleft alterations, peripherally located variants, including a highly recurrent V411L, did not significantly elevate mutagenesis. Finally, the analysis of Polε variants found in MMR-deficient tumors suggested that the majority cause no mutator phenotype alone but some can synergize with MMR deficiency to increase the mutation rate.
AB - DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε). They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, Polε-P286R, in yeast produced an unexpectedly strong mutator effect that exceeded the effect of proofreading deficiency by two orders of magnitude and indicated the involvement of other infidelity factors. The in vivo consequences of many additional Polε mutations reported in cancers remain poorly understood. Here, we genetically characterized 13 cancer-associated Polε variants in the yeast system. Only variants directly altering the DNA binding cleft in the exonuclease domain elevated the mutation rate. Among these, frequently recurring variants were stronger mutators than rare variants, in agreement with the idea that mutator phenotype has a causative role in tumorigenesis. In nearly all cases, the mutator effects exceeded those of an exonuclease-null allele, suggesting that mechanisms distinct from loss of proofreading may drive the genome instability in most ultramutated tumors. All mutator alleles were semidominant, supporting the view that heterozygosity for the polymerase mutations is sufficient for tumor development. In contrast to the DNA binding cleft alterations, peripherally located variants, including a highly recurrent V411L, did not significantly elevate mutagenesis. Finally, the analysis of Polε variants found in MMR-deficient tumors suggested that the majority cause no mutator phenotype alone but some can synergize with MMR deficiency to increase the mutation rate.
KW - Cancer
KW - DNA polymerase ε
KW - Mutator
KW - POLE
KW - Proofreading
UR - http://www.scopus.com/inward/record.url?scp=85042685815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042685815&partnerID=8YFLogxK
U2 - 10.1534/g3.118.200042
DO - 10.1534/g3.118.200042
M3 - Article
C2 - 29352080
AN - SCOPUS:85042685815
SN - 2160-1836
VL - 8
SP - 1019
EP - 1029
JO - G3: Genes, Genomes, Genetics
JF - G3: Genes, Genomes, Genetics
IS - 3
ER -