Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy

Joseph I. Tracy, Karol Osipowicz, Philip Spechler, Ashwini Sharan, Christopher Skidmore, Gaelle Doucet, Michael R. Sperling

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Hum Brain Mapp 35:353-366, 2014.

Original languageEnglish (US)
Pages (from-to)353-366
Number of pages14
JournalHuman Brain Mapping
Volume35
Issue number1
DOIs
StatePublished - Jan 2014

Keywords

  • Connectivity
  • Cortical inhibition
  • Epilepsy
  • Resting-state
  • Unilateral versus bilateral epileptiform activity

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy'. Together they form a unique fingerprint.

Cite this