Abstract
Special high-K diets have cardioprotective effects and are often warranted in conjunction with diuretics such as furosemide for treating hypertension. However, it is not understood how a high-K diet (HK) influences the actions of diuretics on renal K+ handling. Furosemide acidifies the urine by increasing acid secretion via the Na+-H+ exchanger 3 (NHE3) in TAL and vacuolar H+-ATPase (V-ATPase) in the distal nephron. We previously found that an alkaline urine is required for large conductance Ca2+- activated K+ (BK)-αβ4-mediated K+ secretion in mice on HK. We therefore hypothesized that furosemide could reduce BK-αβ4-mediated K+ secretion by acidifying the urine. Treating with furosemide (drinking water) for 11 days led to decreased urine pH in both wild-type (WT) and BK-β4-knockout mice (BK-β4-KO) with increased V-ATPase expression and elevated plasma aldosterone levels. However, furosemide decreased renal K+ clearance and elevated plasma [K+] in WT but not BK-β4-KO. Western blotting and immunofluorescence staining showed that furosemide treatment decreased cortical expression of BK-β4 and reduced apical localization of BK-α in connecting tubules. Addition of the carbonic anhydrase inhibitor, acetazolamide, to furosemide water restored urine pH along with renal K+ clearance and plasma [K+] to control levels. Acetazolamide plus furosemide also restored the cortical expression of BK-β4 and BK-α in connecting tubules. These results indicate that in mice adapted to HK, furosemide reduces BK-αβ4- mediated K+ secretion by acidifying the urine.
Original language | English (US) |
---|---|
Pages (from-to) | F341-F350 |
Journal | American Journal of Physiology - Renal Physiology |
Volume | 316 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2019 |
Keywords
- Furosemide
- High-K diet
- Large conductance Ca-activated K
- Urine pH
ASJC Scopus subject areas
- Physiology