TY - JOUR
T1 - GLP-1 elicits an intrinsic gut-liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance
AU - Khound, Rituraj
AU - Taher, Jennifer
AU - Baker, Christopher
AU - Adeli, Khosrow
AU - Su, Qiaozhu
N1 - Publisher Copyright:
© 2017 American Heart Association, Inc.
PY - 2017
Y1 - 2017
N2 - Objective-Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. Approach and Results-By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a highfat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Conclusions-Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.
AB - Objective-Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. Approach and Results-By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a highfat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Conclusions-Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.
KW - Glucagon-like peptide-1
KW - Gut hormone
KW - Hyperlipidemia
KW - Insulin resistance
KW - Obesity
KW - Palmitic acid
KW - Vagotomy
KW - Very-low-density lipoprotein
UR - http://www.scopus.com/inward/record.url?scp=85038221309&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038221309&partnerID=8YFLogxK
U2 - 10.1161/ATVBAHA.117.310251
DO - 10.1161/ATVBAHA.117.310251
M3 - Article
C2 - 29074588
AN - SCOPUS:85038221309
SN - 1079-5642
VL - 37
SP - 2252
EP - 2259
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 12
ER -