Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/ HIF1a axis

Christopher M. Horn, Prabhakar Arumugam, Zachary Van Roy, Cortney E. Heim, Rachel W. Fallet, Blake P. Bertrand, Dhananjay Shinde, Vinai C. Thomas, Svetlana G. Romanova, Tatiana K. Bronich, Curtis W. Hartman, Kevin L. Garvin, Tammy Kielian

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC–mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA–Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.

Original languageEnglish (US)
Article numbere174051
JournalJournal of Clinical Investigation
Volume134
Issue number8
DOIs
StatePublished - Apr 15 2024

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/ HIF1a axis'. Together they form a unique fingerprint.

Cite this