High-Spin Diradical Dication of Chiral π-Conjugated Double Helical Molecule

Chan Shu, Hui Zhang, Arnon Olankitwanit, Suchada Rajca, Andrzej Rajca

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


We report an air-stable diradical dication of chiral D2-symmetric conjoined bis[5]diazahelicene with an unprecedented high-spin (triplet) ground state, singlet triplet energy gap, ?EST = 0.3 kcal mol-1. The diradical dication possesses closed-shell (Kekulé) resonance forms with 16 π-electron perimeters. The diradical dication is monomeric in dibutyl phthalate (DBP) matrix at low temperatures, and it has a half-life of more than 2 weeks at ambient conditions in the presence of excess oxidant. A barrier of ?35 kcal mol-1 has been experimentally determined for inversion of configuration in the neutral conjoined bis[5]diazahelicene, while the inversion barriers in its radical cation and diradical dication were predicted by the DFT computations to be within a few kcal mol-1 of that in the neutral species. Chiral HPLC resolution provides the chiral D2-symmetric conjoined bis[5]diazahelicene, enriched in (P,P)- or (M,M)-enantiomers. The enantiomerically enriched triplet diradical dication is configurationally stable for 48 h at room temperature, thus providing the lower limit for inversion barrier of configuration of 27 kcal mol-1. The enantiomers of conjoined bis[5]diazahelicene and its diradical dication show strong chirooptical properties that are comparable to [6]helicene or carbon-sulfur [7]helicene, as determined by the anisotropy factors, |g| = |?ϵ|/ϵ = 0.007 at 348 nm (neutral) and |g| = 0.005 at 385 nm (diradical dication). DFT computations of the radical cation suggest that SOMO and HOMO energy levels are near-degenerate.

Original languageEnglish (US)
Pages (from-to)17287-17294
Number of pages8
JournalJournal of the American Chemical Society
Issue number43
StatePublished - 2019

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'High-Spin Diradical Dication of Chiral π-Conjugated Double Helical Molecule'. Together they form a unique fingerprint.

Cite this