HIV-1 clade B and C isolates exhibit differential replication: Relevance to macrophage-mediated neurotoxicity

Agnes A. Constantino, Yunlong Huang, Hong Zhang, Charles Wood, Jialin C. Zheng

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


HIV-associated neurocognitive disorders (HAND) continue to be a consequence of HIV-1 infection among clade B-infected individuals. In contrast, the incidence of severe neurological impairment is lower among clade C-infected patients in regions of Sub-Saharan Africa and India. Biological aspects such as replication, cytopathicity, inflammatory response, and neurotoxicity unique to each clade influence neuropathogenicity and ultimately affect the clinical outcome of the disease. We hypothesize that productive infection by clade C isolates leads to macrophage- mediated neurotoxicity, although to a lesser extent than clade B isolates. Using a panel of primary isolates of clades B and C we demonstrated that clade B has higher replication efficiency in monocyte-derived macrophages (MDM) through reverse transcriptase activity assay and HIV-1 p24 antigen ELISA. To test the neurotoxicity of clades B and C, we used an in vitro neurotoxicity model. Conditioned medium from clade B-infected MDM was neurotoxic to rat and human neuron cultures. In contrast, clade C isolates mediated neurotoxicity when a higher initial viral titer was used for MDM infection. Furthermore, neurotoxicity mediated by isolates of both clades correlated with virus replication in MDM. Together, these results suggest that in comparison to clade B, primary isolates of clade C have slower replication kinetics in primary MDM, leading to lower levels of macrophage-mediated neurotoxicity. Elucidating the differences in replication and macrophage- mediated neurotoxicity between isolates of HIV-1 clades B and C will provide important insights needed to clarify the disparity seen in HAND incidence.

Original languageEnglish (US)
Pages (from-to)277-288
Number of pages12
JournalNeurotoxicity Research
Issue number3
StatePublished - Oct 2011


  • HIV-1 clade B
  • HIV-1 clade C
  • HIV-associated neurocognitive disorders
  • Macrophages
  • Neurotoxicity

ASJC Scopus subject areas

  • General Neuroscience
  • Toxicology


Dive into the research topics of 'HIV-1 clade B and C isolates exhibit differential replication: Relevance to macrophage-mediated neurotoxicity'. Together they form a unique fingerprint.

Cite this