TY - JOUR
T1 - Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms
AU - Joly, Sophie
AU - Maze, Connie
AU - McCray, Paul B.
AU - Guthmiller, Janet M.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/3
Y1 - 2004/3
N2 - Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100% susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50% of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.
AB - Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100% susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50% of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.
UR - http://www.scopus.com/inward/record.url?scp=1542513868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542513868&partnerID=8YFLogxK
U2 - 10.1128/JCM.42.3.1024-1029.2004
DO - 10.1128/JCM.42.3.1024-1029.2004
M3 - Article
C2 - 15004048
AN - SCOPUS:1542513868
VL - 42
SP - 1024
EP - 1029
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
SN - 0095-1137
IS - 3
ER -