TY - GEN
T1 - Human absorbable microRNA prediction based on an ensemble manifold ranking model
AU - Shu, Jiang
AU - Chiang, Kevin
AU - Zhao, Dongyu
AU - Cui, Juan
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/12/16
Y1 - 2015/12/16
N2 - MicroRNAs, a class of short non-coding RNAs, are able to regulate more than half of human genes and affect many fundamental biological processes. It has been long considered synthesized endogenously until very recent discoveries showing that human can absorb exogenous microRNAs from dietary resources. This finding has raised a challenge scientific question: which exogenous microRNAs can be integrated into human circulation and possibly exert functions in human? Here we present a well-designed ensemble manifold ranking model for identifying human absorbable exogenous miRNAs from 14 common dietary species. Specifically, we have analyzed 4,910 dietary microRNAs with 1,120 features derived based on the microRNA sequence and structure. In total, 70 discriminative features were selected to characterize the circulating microRNAs in human and have been used to infer the possibility of a certain exogenous microRNA getting integrated into human circulation. Finally, 461 dietary microRNAs have been identified as transportable exogenous microRNAs. To assess the performance of our ensemble model, we have validated the top predictions through a milk-feeding study. In addition, 26 microRNAs from two virus species were predicted as transportable and have been validated in two external experiments. The results demonstrate the data-driven computational model is highly promising to study transportable microRNAs while bypassing the complex mechanistic details.
AB - MicroRNAs, a class of short non-coding RNAs, are able to regulate more than half of human genes and affect many fundamental biological processes. It has been long considered synthesized endogenously until very recent discoveries showing that human can absorb exogenous microRNAs from dietary resources. This finding has raised a challenge scientific question: which exogenous microRNAs can be integrated into human circulation and possibly exert functions in human? Here we present a well-designed ensemble manifold ranking model for identifying human absorbable exogenous miRNAs from 14 common dietary species. Specifically, we have analyzed 4,910 dietary microRNAs with 1,120 features derived based on the microRNA sequence and structure. In total, 70 discriminative features were selected to characterize the circulating microRNAs in human and have been used to infer the possibility of a certain exogenous microRNA getting integrated into human circulation. Finally, 461 dietary microRNAs have been identified as transportable exogenous microRNAs. To assess the performance of our ensemble model, we have validated the top predictions through a milk-feeding study. In addition, 26 microRNAs from two virus species were predicted as transportable and have been validated in two external experiments. The results demonstrate the data-driven computational model is highly promising to study transportable microRNAs while bypassing the complex mechanistic details.
KW - Dietary microRNAs
KW - cross-species transportable microRNAs
KW - ensemble manifold ranking model
KW - feature selection
KW - viral miRNAs
UR - http://www.scopus.com/inward/record.url?scp=84962419440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962419440&partnerID=8YFLogxK
U2 - 10.1109/BIBM.2015.7359697
DO - 10.1109/BIBM.2015.7359697
M3 - Conference contribution
C2 - 30416843
AN - SCOPUS:84962419440
T3 - Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
SP - 295
EP - 300
BT - Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
A2 - Schapranow, lng. Matthieu
A2 - Zhou, Jiayu
A2 - Hu, Xiaohua Tony
A2 - Ma, Bin
A2 - Rajasekaran, Sanguthevar
A2 - Miyano, Satoru
A2 - Yoo, Illhoi
A2 - Pierce, Brian
A2 - Shehu, Amarda
A2 - Gombar, Vijay K.
A2 - Chen, Brian
A2 - Pai, Vinay
A2 - Huan, Jun
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
Y2 - 9 November 2015 through 12 November 2015
ER -