TY - JOUR
T1 - Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane
AU - Mokhtari, Reza Bayat
AU - Baluch, Narges
AU - Morgatskaya, Evgeniya
AU - Kumar, Sushil
AU - Sparaneo, Angelo
AU - Muscarella, Lucia Anna
AU - Zhao, Sheyun
AU - Cheng, Hai Ling
AU - Das, Bikul
AU - Yeger, Herman
N1 - Funding Information:
This work is supported by a grant from the Cancer Research Society (CRS), (to HY) joint with the Canadian Neuroendocrine Tumor Society (CNTS), (to HY) and by the AIRC/MGAF grant 12983 (to LAM). The funding bodies had no role in the design of the study, collection, analysis, interpretation of data, and in writing the manuscript. CRS and CNTS grants supported the doctoral studies of Reza Bayat Mokhtari.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/8/30
Y1 - 2019/8/30
N2 - Background: Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods: Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results: Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions: Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.
AB - Background: Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods: Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results: Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions: Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.
KW - 3D spheroids
KW - Acetazolamide
KW - Bronchial carcinoid
KW - Combination therapy
KW - Orthotopic lung model
KW - Sulforaphane
UR - http://www.scopus.com/inward/record.url?scp=85071753509&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071753509&partnerID=8YFLogxK
U2 - 10.1186/s12885-019-6018-1
DO - 10.1186/s12885-019-6018-1
M3 - Article
C2 - 31470802
AN - SCOPUS:85071753509
SN - 1471-2407
VL - 19
JO - BMC cancer
JF - BMC cancer
IS - 1
M1 - 864
ER -