Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest

Scott Trappe, Andrew Creer, Kiril Minchev, Dustin Slivka, Emily Louis, Nicholas Luden, Todd Trappe

Research output: Contribution to journalArticle

50 Scopus citations

Abstract

The soleus muscle has been consistently shown to atrophy more than other leg muscles during unloading and is difficult to protect using various exercise countermeasure paradigms. However, the efficacy of aerobic exercise, a known stimulus for oxidative adaptations, has not been tested in combination with resistance exercise (RE), a known hypertrophic stimulus. We hypothesized that a concurrent exercise program (AE + RE) would preserve soleus fiber myosin heavy chain (MHC) I size and function during 60 days of bed rest. A secondary objective was to test the hypothesis that a leucine-enriched high protein diet would partially protect soleus single fiber characteristics. Soleus muscle biopsies were obtained before and after bed rest from a control (BR; n = 7), nutrition (BRN; n = 8), and exercise (BRE; n = 6) group. Single muscle fiber diameter (Dia), peak force (Po), contractile velocity, and power were studied. BR decreased (P < 0.05) MHC I Dia (-14%), Po (-38%), and power (-39%) with no change in contractile velocity. Changes in MHC I size (-13%) and contractile function (∼30%) from BRN were similar to BR. BRE decreased (P < 0.05) MHC I Dia (-13%) and Po (-23%), while contractile velocity increased (P < 0.05) 26% and maintained power. These soleus muscle data show 1) the AE + RE exercise program maintained MHC I power but not size and strength, and 2) the nutrition countermeasure did not benefit single fiber size and contractile function. The divergent response in size and functional MHC I soleus properties with the concurrent exercise program was a unique finding further highlighting the challenges of protecting the unloaded soleus.

Original languageEnglish (US)
Pages (from-to)R939-R947
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume294
Issue number3
DOIs
StatePublished - Mar 1 2008

    Fingerprint

Keywords

  • Contractile properties
  • Exercise
  • Microgravity
  • Skeletal muscle
  • Space-flight
  • Women's International Space Exploration (WISE) 2005

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this