TY - JOUR
T1 - iCluF
T2 - an unsupervised iterative cluster-fusion method for patient stratification using multiomics data
AU - Shakyawar, Sushil K.
AU - Sajja, Balasrinivasa R.
AU - Patel, Jai Chand
AU - Guda, Chittibabu
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Motivation: Patient stratification is crucial for the effective treatment or management of heterogeneous diseases, including cancers. Multiomic technologies facilitate molecular characterization of human diseases; however, the complexity of data warrants the need for the development of robust data integration tools for patient stratification using machine-learning approaches. Results: iCluF iteratively integrates three types of multiomic data (mRNA, miRNA, and DNA methylation) using pairwise patient similarity matrices built from each omic data. The intermediate omic-specific neighborhood matrices implement iterative matrix fusion and message passing among the similarity matrices to derive a final integrated matrix representing all the omics profiles of a patient, which is used to further cluster patients into subtypes. iCluF outperforms other methods with significant differences in the survival profiles of 8581 patients belonging to 30 different cancers in TCGA. iCluF also predicted the four intrinsic subtypes of Breast Invasive Carcinomas with adjusted rand index and Fowlkes–Mallows scores of 0.72 and 0.83, respectively. The Gini importance score showed that methylation features were the primary decisive players, followed by mRNA and miRNA to identify disease subtypes. iCluF can be applied to stratify patients with any disease containing multiomic datasets. Availability and implementation: Source code and datasets are available at https://github.com/GudaLab/iCluF_core.
AB - Motivation: Patient stratification is crucial for the effective treatment or management of heterogeneous diseases, including cancers. Multiomic technologies facilitate molecular characterization of human diseases; however, the complexity of data warrants the need for the development of robust data integration tools for patient stratification using machine-learning approaches. Results: iCluF iteratively integrates three types of multiomic data (mRNA, miRNA, and DNA methylation) using pairwise patient similarity matrices built from each omic data. The intermediate omic-specific neighborhood matrices implement iterative matrix fusion and message passing among the similarity matrices to derive a final integrated matrix representing all the omics profiles of a patient, which is used to further cluster patients into subtypes. iCluF outperforms other methods with significant differences in the survival profiles of 8581 patients belonging to 30 different cancers in TCGA. iCluF also predicted the four intrinsic subtypes of Breast Invasive Carcinomas with adjusted rand index and Fowlkes–Mallows scores of 0.72 and 0.83, respectively. The Gini importance score showed that methylation features were the primary decisive players, followed by mRNA and miRNA to identify disease subtypes. iCluF can be applied to stratify patients with any disease containing multiomic datasets. Availability and implementation: Source code and datasets are available at https://github.com/GudaLab/iCluF_core.
UR - http://www.scopus.com/inward/record.url?scp=85186918403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85186918403&partnerID=8YFLogxK
U2 - 10.1093/bioadv/vbae015
DO - 10.1093/bioadv/vbae015
M3 - Article
C2 - 38698887
AN - SCOPUS:85186918403
SN - 2635-0041
VL - 4
JO - Bioinformatics Advances
JF - Bioinformatics Advances
IS - 1
M1 - vbae015
ER -