TY - JOUR
T1 - Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity
AU - Xiao, Yanjing
AU - Cai, Yibin
AU - Bommineni, Yugendar R.
AU - Fernando, Samodha C.
AU - Prakash, Om
AU - Gilliland, Stanley E.
AU - Zhang, Guolong
PY - 2006/2/3
Y1 - 2006/2/3
N2 - Cathelicidins comprise a family of antimicrobial peptides sharing a highly conserved cathelin domain. Here we report that the entire chicken genome encodes three cathelicidins, namely fowlicidin-1 to -3, which are densely clustered within a 7.5-kb distance at the proximal end of chromosome 2p. Each fowlicidin gene adopts a fourexon, three-intron structure, typical for a mammalian cathelicidin. Phylogenetic analysis revealed that fowlicidins and a group of distantly related mammalian cathelicidins known as neutrophilic granule proteins are likely to originate from a common ancestral gene prior to the separation of birds from mammals, whereas other classic mammalian cathelicidins may have been duplicated from the primordial gene for neutrophilic granule proteins after mammals and birds are diverged. Similar to ovine cathelicidin SMAP-29, putatively mature fowlicidins displayed potent and salt-independent activities against a range of Gram-negative and Gram-positive bacteria, including antibiotic-resistant strains, with minimum inhibitory concentrations in the range of 0.4-2.0 μM for most strains. Fowlicidin-1 and -2 also showed cytotoxicity, with 50% killing of mammalian erythrocytes or epithelial cells in the range of 6-40 μM. In addition, two fowlicidins demonstrated a strong positive cooperativity in binding lipopolysaccharide (LPS), resulting in nearly complete blockage of LPS-mediated proinflammatory gene expression in RAW264.7 cells. Taken together, fowlicidin-1 and -2 are clearly among the most potent cathelicidins that have been reported. Their broad spectrum and salt-insensitive antibacterial activities, coupled with their potent LPS-neutralizing activity, make fowlicidins excellent candidates for novel antimicrobial and antisepsis agents.
AB - Cathelicidins comprise a family of antimicrobial peptides sharing a highly conserved cathelin domain. Here we report that the entire chicken genome encodes three cathelicidins, namely fowlicidin-1 to -3, which are densely clustered within a 7.5-kb distance at the proximal end of chromosome 2p. Each fowlicidin gene adopts a fourexon, three-intron structure, typical for a mammalian cathelicidin. Phylogenetic analysis revealed that fowlicidins and a group of distantly related mammalian cathelicidins known as neutrophilic granule proteins are likely to originate from a common ancestral gene prior to the separation of birds from mammals, whereas other classic mammalian cathelicidins may have been duplicated from the primordial gene for neutrophilic granule proteins after mammals and birds are diverged. Similar to ovine cathelicidin SMAP-29, putatively mature fowlicidins displayed potent and salt-independent activities against a range of Gram-negative and Gram-positive bacteria, including antibiotic-resistant strains, with minimum inhibitory concentrations in the range of 0.4-2.0 μM for most strains. Fowlicidin-1 and -2 also showed cytotoxicity, with 50% killing of mammalian erythrocytes or epithelial cells in the range of 6-40 μM. In addition, two fowlicidins demonstrated a strong positive cooperativity in binding lipopolysaccharide (LPS), resulting in nearly complete blockage of LPS-mediated proinflammatory gene expression in RAW264.7 cells. Taken together, fowlicidin-1 and -2 are clearly among the most potent cathelicidins that have been reported. Their broad spectrum and salt-insensitive antibacterial activities, coupled with their potent LPS-neutralizing activity, make fowlicidins excellent candidates for novel antimicrobial and antisepsis agents.
UR - http://www.scopus.com/inward/record.url?scp=33646367203&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646367203&partnerID=8YFLogxK
U2 - 10.1074/jbc.M507180200
DO - 10.1074/jbc.M507180200
M3 - Article
C2 - 16326712
AN - SCOPUS:33646367203
SN - 0021-9258
VL - 281
SP - 2858
EP - 2867
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 5
ER -