TY - JOUR
T1 - Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods
AU - Morrow, Jarrett D.
AU - Qiu, Weiliang
AU - Chhabra, Divya
AU - Rennard, Stephen I.
AU - Belloni, Paula
AU - Belousov, Anton
AU - Pillai, Sreekumar G.
AU - Hersh, Craig P.
N1 - Funding Information:
Supported by National Institutes of Health grants R01HL094635, R01NR013377, P01HL105339, R01HL111759. The TESRA study was supported by Roche. Roche designed the TESRA study and collected the data. The funders had no role in the data analysis in this manuscript, the writing of the manuscript or the decision to submit the manuscript for publication. TESRA Investigators: Ognian Georgiev, Sofia, Bulgaria; Dimitar Popov, Sofia, Bulgaria; Hristo Metev, Ruse, Bulgaria; Vasil Dimitrov, Sofia, Bulgaria; Yavor Ivanov, St. Pleven, Bulgaria; Libor Fila, Praha, Czech Republic; Vladimir Zindr Vitezna, Karlovy Vary, Czech Republic; Kamil Klenha, Tabor, Czech Republic; Jiri Votruba, Praha, Czech Republic; Jaromir Roubec, Ostrava, Czech Republic; Barna Szima, Szombathely, Hungary; Zsuzsanna Mark, Torokbalint, Hungary; Zoltan Baliko, Pecs Hungary; Zoltan Bartfai, Budapest, Hungary; Katalin Gomori, Balassagyarmat, Hungary; Andres Sigvaldason, Reykjavik, Iceland; Mordechai Kramer, Petach Tikva, Israel; Gershon Ya Fink, Rehovot, Israel; Zeev Weiler, Ashkelon, Israel; Joel Greif, Tel Aviv, Israel; Issahar Ben-Dov, Ramat Gan, Israel; Mordechai Yigla, Haifa, Israel; Leonardo Fabbri, Modena, Italy; Pierluigi Paggiaro, Pisa, Italy; Giorgio Canonica, Genova, Italy; Isa Cerveri, Pavia, Italy; Antra Bekere, Riga, Latvia; Aurika Babjoniseva, Riga, Latvia; Alvil Krams, Stopinu Pagasts, Rigas Rajons, Latvia; Wladyslaw Pierzchala, Katowice, Poland; Dariusz Nowak, Lodz, Poland; Robert Mroz, Bialystok, Poland; Hanna Szelerska-Twardosz, Poznan Poland; Malgorzata Rzymkowska, Poznan, Poland; Ismail Abdullah, Durban, South Africa; Christo Van Dyk, Western Cape, Worcester, South Africa; Nyda Fourie, Bloemfontein, South Africa; John O’Brien, Cape Town, South Africa; J. Joubert, Bellville-Cape Province, South Africa; Abdool Gafar, Kwa-Zulu Natal, Amanzimtoti, South Africa; Mary Bateman, Cape Town, South Africa; Hannes Van Rensburg, Centurion, South Africa; Lyudmila Yashina, Kiev, Ukraine; Nadezda Monogarova, Donetsk, Ukraine; Oleksandr Dzyublik, Kiev, Ukraine; Volodymyr Gavrysyuk, Kiev, Ukraine; Yuriy Feshchenko, Kiev, Ukraine; David Parr, Coventry, United Kingdom, Stephen Rennard, Omaha, NE; Richard Casaburi, Torrance, CA; Gerard Criner, Philadelphia, PA; Mark Dransfield, Birmingham, AL; Charles Fogarty, Spartanburg, SC; Nicola Hanania, Houston, TX; Carl Griffin, Oklahoma City, OK; Kathi Mcdavid, Oklahoma City, OK; Paul Kvale, Detroit, MI; Barry Make, Denver, CO; Joe Ramsdell, San Diego, CA; Michael D. Roth, Los Angeles, CA; Amir Harafkhaneh, Houston, TX; Peter Sporn, Chicago, IL. Steering Committee: Alvar Agustı´ (Spain), Peter Calverley (UK), Leonardo Fabbri (Italy), Klaus F. Rabe (Netherlands), Nicolas Roche (France), Michael Roth (US), Jorgen Vestbo (Denmark), Stephen Rennard (US).
Funding Information:
Drs. Morrow, Qiu, Chhabra, and Hersh report no competing interests related to this manuscript. Dr. Rennard received a research grant from Roche for the TESRA study. Dr. Belloni is an employee of Genentech. Dr. Belousov is an employee of Roche. Dr. Pillai was formerly an employee of Hoffman La Roche and is currently an employee of Eli Lilly and Company.
Publisher Copyright:
© 2015 Morrow et al.; licensee BioMed Central.
PY - 2015/1/13
Y1 - 2015/1/13
N2 - Background: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors. Exacerbation frequency may be a stable trait in COPD patients, which could imply genetic susceptibility. Observing the genes, networks, and pathways that are up- and down-regulated in COPD patients with differing susceptibility to exacerbations will help to elucidate the molecular signature and pathogenesis of COPD exacerbations. Methods: Gene expression array and plasma biomarker data were obtained using whole-blood samples from subjects enrolled in the Treatment of Emphysema With a Gamma-Selective Retinoid Agonist (TESRA) study. Linear regression, weighted gene co-expression network analysis (WGCNA), and pathway analysis were used to identify signatures and network sub-modules associated with the number of exacerbations within the previous year; other COPD-related phenotypes were also investigated. Results: Individual genes were not found to be significantly associated with the number of exacerbations. However using network methods, a statistically significant gene module was identified, along with other modules showing moderate association. A diverse signature was observed across these modules using pathway analysis, marked by differences in B cell and NK cell activity, as well as cellular markers of viral infection. Within two modules, gene set enrichment analysis recapitulated the molecular signatures of two gene expression experiments; one involving sputum from asthma exacerbations and another involving viral lung infections. The plasma biomarker myeloperoxidase (MPO) was associated with the number of recent exacerbations. Conclusion: A distinct signature of COPD exacerbations may be observed in peripheral blood months following the acute illness. While not predictive in this cross-sectional analysis, these results will be useful in uncovering the molecular pathogenesis of COPD exacerbations.
AB - Background: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors. Exacerbation frequency may be a stable trait in COPD patients, which could imply genetic susceptibility. Observing the genes, networks, and pathways that are up- and down-regulated in COPD patients with differing susceptibility to exacerbations will help to elucidate the molecular signature and pathogenesis of COPD exacerbations. Methods: Gene expression array and plasma biomarker data were obtained using whole-blood samples from subjects enrolled in the Treatment of Emphysema With a Gamma-Selective Retinoid Agonist (TESRA) study. Linear regression, weighted gene co-expression network analysis (WGCNA), and pathway analysis were used to identify signatures and network sub-modules associated with the number of exacerbations within the previous year; other COPD-related phenotypes were also investigated. Results: Individual genes were not found to be significantly associated with the number of exacerbations. However using network methods, a statistically significant gene module was identified, along with other modules showing moderate association. A diverse signature was observed across these modules using pathway analysis, marked by differences in B cell and NK cell activity, as well as cellular markers of viral infection. Within two modules, gene set enrichment analysis recapitulated the molecular signatures of two gene expression experiments; one involving sputum from asthma exacerbations and another involving viral lung infections. The plasma biomarker myeloperoxidase (MPO) was associated with the number of recent exacerbations. Conclusion: A distinct signature of COPD exacerbations may be observed in peripheral blood months following the acute illness. While not predictive in this cross-sectional analysis, these results will be useful in uncovering the molecular pathogenesis of COPD exacerbations.
KW - Biomarker
KW - Chronic obstructive pulmonary disease
KW - Gene expression profiling
KW - Network analysis
UR - http://www.scopus.com/inward/record.url?scp=84928008785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928008785&partnerID=8YFLogxK
U2 - 10.1186/s12920-014-0072-y
DO - 10.1186/s12920-014-0072-y
M3 - Article
C2 - 25582225
AN - SCOPUS:84928008785
SN - 1755-8794
VL - 8
JO - BMC Medical Genomics
JF - BMC Medical Genomics
IS - 1
M1 - 1
ER -