Immunoadsorption of Cryptococcus-specific suppressor T-cell factors

R. L. Mosley, J. W. Murphy, R. A. Cox

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

In the murine cryptococcal suppressor cell circuit, two different T-cell suppressor factors, TsF1 and TsF2, have been identified which specifically suppress the delayed-type hypersensitivity (DTH) response to cryptococcal culture filtrate antigen (CneF). TsF1 is produced by a first-order T suppressor (Ts1) cell population and suppresses the afferent limb of the DTH response, whereas TsF2 is produced by a second-order T suppressor (Ts2) cell population and suppresses the efferent limb of the cryptococcal DTH response. The objective of this study was to ascertain whether TsF1 or TsF2 could bind to cryptococcal antigen. To assess this, adsorption of TsF1 and TsF2 was performed with heat-killed Cryptococcus neoformans cells and by solid-phase immunoadsorption (SPIA) on columns containing cryptococcal antigens, i.e., CneF covalently bound to Sepharose 4B. The suppressive effect of TsF1 was removed by adsorption with intact heat-killed cryptococci and by SPIA on CneF-Sepharose 4B. The binding of cryptococcal TsF1 to the cryptococcal SPIA column was shown to be specific since Sepharose 4B columns either coupled with Saccharomyces cerevisiae mannan or blocked with glycine did not adsorb the suppressor activity. In contrast, the suppressive component of TsF2 did not bind to heat-killed cryptococci, CneF-Sepharose 4B, S. cerevisiae mannan-Sepharose 4B, or glycine-Sepharose 4B columns. These results, together with the finding that cryptococcal antigen, anticryptococcal antibody, and C1q-binding immune complexes were not demonstrated in either TsF1 or TsF2, establish that TsF1 and TsF2 can be differentiated on the basis of their affinity for cryptococcal antigen

Original languageEnglish (US)
Pages (from-to)844-850
Number of pages7
JournalInfection and immunity
Volume51
Issue number3
DOIs
StatePublished - Jan 1 1986

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Immunoadsorption of Cryptococcus-specific suppressor T-cell factors'. Together they form a unique fingerprint.

  • Cite this