TY - JOUR
T1 - Impaired Geotaxis as a Novel Phenotype of Nora Virus Infection of Drosophila melanogaster
AU - Rogers, Abigail
AU - Towery, Lesley
AU - McCown, Amanda
AU - Carlson, Kimberly A.
N1 - Funding Information:
The authors would like to thank Drs. Hultmark and Ekstrom for their gift of the original Nora virus stocks; Devyn Crisman for technical help in the project; Dr. Brandon Luedtke for reviewing and editing the original manuscript; and Dr. Xiao Peng of the Bioinformatics and Systems Biology Core at UNMC for providing Kaplan–Meier data analysis services, which received support from Nebraska Research Initiative (NRI) and NIH (2P20GM103427 and 5P30CA036727). The project described was supported by grants from the UNK Undergraduate Research Fellows Program, the UNK Biology Department, the National Center for Research Resources (NCRR) (5P20RR016469), and the National Institute for General Medical Science (NIGMS) (8P20GM103427), a component of the National Institutes of Health (NIH). Dr. Carlson was also supported by a grant from the NIGMS (1U54GM115458).
Publisher Copyright:
© 2020 Abigail Rogers et al.
PY - 2020
Y1 - 2020
N2 - Nora virus (NV) is a picorna-like virus that contains a positive-sense, single-stranded RNA genome. The virus infects Drosophila melanogaster with no known characterized phenotype. In this study, geotaxis assays and longevity analyses were used to determine if Nora virus infection affects D. melanogaster's locomotor ability. In addition, Drosophila C virus (DCV), a well-characterized D. melanogaster virus, was used as a positive control, as it has previously shown a locomotor defect in infected flies. Stocks infected with NV (NV+) and DCV (DCV+) and virus-free (NV-/DCV-) stocks were established. Over a 3-year period, approximately 2,500 virgin female flies were tested for geotaxis and longevity using Kaplan-Meier analyses, as well as the Cox Proportional Hazards regression for survivorship. There was a significant decrease in the geotaxis when the D. melanogaster flies were infected with Nora virus compared to uninfected controls, but no difference was found between DCV+ and NV+ trials. There were not significant differences in longevity between the three groups. This is the first time that a phenotype has been recorded in association with Nora virus infection. Overall, the data demonstrate that geotaxis dysfunction may be a phenotypic hallmark of Nora virus infection.
AB - Nora virus (NV) is a picorna-like virus that contains a positive-sense, single-stranded RNA genome. The virus infects Drosophila melanogaster with no known characterized phenotype. In this study, geotaxis assays and longevity analyses were used to determine if Nora virus infection affects D. melanogaster's locomotor ability. In addition, Drosophila C virus (DCV), a well-characterized D. melanogaster virus, was used as a positive control, as it has previously shown a locomotor defect in infected flies. Stocks infected with NV (NV+) and DCV (DCV+) and virus-free (NV-/DCV-) stocks were established. Over a 3-year period, approximately 2,500 virgin female flies were tested for geotaxis and longevity using Kaplan-Meier analyses, as well as the Cox Proportional Hazards regression for survivorship. There was a significant decrease in the geotaxis when the D. melanogaster flies were infected with Nora virus compared to uninfected controls, but no difference was found between DCV+ and NV+ trials. There were not significant differences in longevity between the three groups. This is the first time that a phenotype has been recorded in association with Nora virus infection. Overall, the data demonstrate that geotaxis dysfunction may be a phenotypic hallmark of Nora virus infection.
UR - http://www.scopus.com/inward/record.url?scp=85089728906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089728906&partnerID=8YFLogxK
U2 - 10.1155/2020/1804510
DO - 10.1155/2020/1804510
M3 - Article
C2 - 32802552
AN - SCOPUS:85089728906
SN - 2090-908X
VL - 2020
JO - Scientifica
JF - Scientifica
M1 - 1804510
ER -