Abstract
Gemcitabine (2′, 2′-difluorodeoxycytidine; dFdC) is a deoxycytidine analog and is used primarily against pancreatic cancer. The cytotoxicity of gemcitabine is due to the inhibition of DNA replication. However, a mechanism of removal of the incorporated dFdC is largely unknown. In this report, we discovered that nucleotide excision repair protein XPF-ERCC1 participates in the repair of gemcitabine-induced DNA damage and inactivation of XPF sensitizes cells to gemcitabine. Further analysis identified that XPF-ERCC1 functions together with apurinic/apyrimidinic endonuclease (APE) in the repair of gemcitabine-induced DNA damage. Our results demonstrate the importance of the evaluation of DNA repair activities in gemcitabine treatment.
Original language | English (US) |
---|---|
Article number | 6357609 |
Journal | Journal of Nucleic Acids |
Volume | 2019 |
DOIs | |
State | Published - 2019 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology