TY - JOUR
T1 - Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium
AU - Toba, Hiroe
AU - de Castro Brás, Lisandra E.
AU - Baicu, Catalin F.
AU - Zile, Michael R.
AU - Lindsey, Merry L.
AU - Bradshaw, Amy D.
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein highly expressed during fibrosis. Fibrosis is a prominent component of cardiac aging that reduces myocardial elasticity. Previously, we reported that SPARC deletion attenuated myocardial stiffness and collagen deposition in aged mice. To investigate the mechanisms by which SPARC promotes age-related cardiac fibrosis, we evaluated six groups of mice (n = 5–6/group): young (3–5 mo old), middle-aged (10–12 mo old), and old (18–29 mo old) C57BL/6 wild type (WT) and SPARC-null (Null) mice. Collagen content, determined by picrosirius red staining, increased in an age-dependent manner in WT but not in Null mice. A disintegrin and metalloproteinase with thrombospondin- like motifs 1 (ADAMTS1) increased in middle-aged and old WT compared with young, whereas in Null mice only old animals showed increased ADAMTS1 expression. Versican, a substrate of ADAMTS1, decreased with age only in WT. To assess the mechanisms of SPARC-induced collagen deposition, we stimulated cardiac fibroblasts with SPARC. SPARC treatment increased secretion of collagen I and ADAMTS1 (both the 110-kDa latent and 87-kDa active forms) into the conditioned media as well as the cellular expression of transforming growth factor-β1-induced protein (Tgfbi) and phosphorylated Smad2. An ADAMTS1 blocking antibody suppressed the SPARC-induced collagen I secretion, indicating that SPARC promoted collagen production directly through ADAMTS1 interaction. In conclusion, ADAMTS1 is an important mediator of SPARC-regulated cardiac aging.
AB - Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein highly expressed during fibrosis. Fibrosis is a prominent component of cardiac aging that reduces myocardial elasticity. Previously, we reported that SPARC deletion attenuated myocardial stiffness and collagen deposition in aged mice. To investigate the mechanisms by which SPARC promotes age-related cardiac fibrosis, we evaluated six groups of mice (n = 5–6/group): young (3–5 mo old), middle-aged (10–12 mo old), and old (18–29 mo old) C57BL/6 wild type (WT) and SPARC-null (Null) mice. Collagen content, determined by picrosirius red staining, increased in an age-dependent manner in WT but not in Null mice. A disintegrin and metalloproteinase with thrombospondin- like motifs 1 (ADAMTS1) increased in middle-aged and old WT compared with young, whereas in Null mice only old animals showed increased ADAMTS1 expression. Versican, a substrate of ADAMTS1, decreased with age only in WT. To assess the mechanisms of SPARC-induced collagen deposition, we stimulated cardiac fibroblasts with SPARC. SPARC treatment increased secretion of collagen I and ADAMTS1 (both the 110-kDa latent and 87-kDa active forms) into the conditioned media as well as the cellular expression of transforming growth factor-β1-induced protein (Tgfbi) and phosphorylated Smad2. An ADAMTS1 blocking antibody suppressed the SPARC-induced collagen I secretion, indicating that SPARC promoted collagen production directly through ADAMTS1 interaction. In conclusion, ADAMTS1 is an important mediator of SPARC-regulated cardiac aging.
KW - A disintegrin and metalloproteinase with thrombospondin-like motifs 1
KW - Fibroblast
KW - Heart
KW - Matrix metalloproteinase
KW - Secreted protein acidic and rich in cysteine
UR - http://www.scopus.com/inward/record.url?scp=84983628399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983628399&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00040.2016
DO - 10.1152/ajpendo.00040.2016
M3 - Article
C2 - 27143554
AN - SCOPUS:84983628399
SN - 0193-1849
VL - 310
SP - E1027-E1035
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 11
ER -